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Abstract

Retrieving similar questions is very important in
community-based question answering. A major
challenge is the lexical gap in sentence match-
ing. In this paper, we propose a convolutional
neural tensor network architecture to encode the
sentences in semantic space and model their in-
teractions with a tensor layer. Our model inte-
grates sentence modeling and semantic matching
into a single model, which can not only capture the
useful information with convolutional and pool-
ing layers, but also learn the matching metrics be-
tween the question and its answer. Besides, our
model is a general architecture, with no need for
the other knowledge such as lexical or syntac-
tic analysis. The experimental results shows that
our method outperforms the other methods on two
matching tasks.

1 Introduction

Community-based (or collaborative) question answering
(CQA) such as Yahoo! Answers' and Baidu Zhidao? has be-
come a popular online service in recent years. Unlike tradi-
tional question answering (QA), information seekers can post
their questions on a CQA website which are later answered
by the other users. However, with the increase of the CQA
archive, it accumulates massive duplicated questions on the
CQA websites. One of the primary reasons is that informa-
tion seekers cannot retrieve answers they need and thus post
another new question consequently. Therefore, it becomes
more and more important to find semantically similar ques-
tions.

The major challenge for CQA retrieval is the problem of
lexical gap (or lexical chasm) among the questions [Jeon et
al., 2005; Xue et al., 2008]. Since question-answer (QA)
pairs are relatively short, the word mismatching problem is
especially important, as shown in Table 1.

Uhttp://answers.yahoo.com/
*http://zhidao.baidu.com/
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Query:

Q: Why is my laptop screen blinking?

Expected:

Q1: How to troubleshoot a flashing screen on an
LCD monitor?

Not Expected:

Q2: How to make text blink on screen with Power-
Point?

Table 1: An example on question retrieval

The state-of-the-art studies [Blooma and Kurian, 2011]
mainly focus on finding textual clues to improve the similarity
function, such as translation-based [Xue et al., 2008; Zhou et
al., 2011] or syntactic-based approaches [Wang et al., 2009;
Carmel et al., 2014]. However, the improvements of these ap-
proaches are limited. The reason is that it is difficult to design
a good similarity function for the discrete representations of
words.

Recently, various methods are proposed to learn dis-
tributed representations of words (word embeddings) in a
low-dimensional vector space. Distributed representations
help learning algorithms to achieve better performance by
grouping similar words, and have been extensively applied
on many natural language processing (NLP) tasks [Turian et
al., 2010; Mikolov ez al., 2010; Collobert et al., 2011].

In this paper, we propose a novel unified model for CQA,
convolutional neural tensor network (CNTN), which inte-
grates the sentence modeling and semantic matching into a
single model. Specifically, we first transform all the word
tokens into vectors by a lookup layer, then encode the ques-
tions and answers to fixed-length vectors with convolutional
and pooling layers, and finally model their interactions with
a tensor layer. Thus, our model can group similar questions
and answers in a semantic vector space and avoid the prob-
lem of lexical gap. The topmost tensor layer can be regarded
as a kind of metric learning methods [Xing er al., 2002] to
measure the relevance of two texts, and learn a better metric
than the traditional similarity metrics, such as inner-product
or Euclidean distance.

The contributions of this paper can be summarized as fol-



lows.

1. Our proposed CNTN architecture integrates the sen-
tence modeling and semantic matching into a unified
model, which can not only capture the useful semantic
and structure information in convolutional and pooling
layers, but also learn the matching metrics between texts
in the topmost tensor layer.

CNTN is a general architecture and need not the com-
plicated NLP pre-processing (such as syntactic analysis)
or prior knowledge (such as WordNet).

We perform extensive empirical studies on two match-
ing tasks, and demonstrate that CNTN is more effective
than the other models.

2 Related Works

2.1 Questions Retrieval

In CQA, various techniques have been studied to solve lexical
gap problems for question retrieval. The early works can be
traced back to finding similar questions in Frequently Asked
Questions (FAQ) archives, such as the FAQ finder [Burke et
al., 19971, which usually used statistical and semantic simi-
larity measures to rank FAQs.

Jeon et al.[2005] showed that the translation model out-
performs the others. In subsequent works, some translation-
based methods [Xue et al., 2008; Zhou et al., 2011] were pro-
posed to more sophisticatedly combine the translation model
and the language model for question retrieval. Although
these methods has yielded the state-of-the-art performance
for question retrieval, they model the word translation prob-
abilities without taking into account the structure of whole
sentences.

Another kind of methods [Wang er al., 2009; Carmel et al.,
2014] utilized the question structures to improve the similar-
ity in question matching. However, these methods depend on
a external parser to get the grammar tree of a sentence.

2.2 Neural Sentence Model

With the recent development of deep learning, most methods
[Bengio et al., 2003; Mikolov et al., 2010; Collobert et al.,
2011] are primarily focus on learning the distributed word
representations (also called word embeddings).

Beyond words, there are some other methods to model
the sentence, called neural sentence models. The primary
role of the neural sentence model is to represent the variable-
length sentence as a fixed-length vector. These models gen-
erally consist of a projection layer that maps words, sub-
word units or n-grams to high dimensional embeddings (of-
ten trained beforehand with unsupervised methods); the latter
are then combined with the different architectures of neural
networks, such as Neural Bag-of-Words (NBOW), recurrent
neural network (RNN), recursive neural network(RecNN),
convolutional neural network (CNN) and so on.

A simple and intuitive method is the Neural Bag-of-Words
(NBOW) model. However, a main drawback of NBOW is
that word order is lost. Although NBOW is effective for gen-
eral document classification, it is not suitable for short sen-
tences. A sentence model based on a recurrent neural net-
work is sensitive to word order, but it has a bias towards the
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Figure 1: Sentence modelling with convolutional neural net-
work.

latest words that it takes as input [Mikolov et al., 2010]. This
gives the RNN excellent performance at language modelling,
but it is suboptimal for modeling the whole sentence. [Le and
Mikolov, 2014] proposed Paragraph Vector (PV) to learn con-
tinuous distributed vector representations for pieces of texts,
which can be regarded as a long term memory of sentence as
opposed to short memory in RNN.

Recursive neural network (RecNN) adopts a more general
structure to encode sentence [Pollack, 1990; Socher et al.,
2013b]. At every node in the tree the contexts at the left and
right children of the node are combined by a classical layer.
The weights of the layer are shared across all nodes in the
tree. The layer computed at the top node gives a representa-
tion for the sentence. However, RecNN depends on external
constituency parse trees provided by an external parse tree.

Convolutional neural network (CNN) is also used to model
sentences [Kalchbrenner et al., 2014; Hu et al., 2014]. As
illustrated in Figure 1, it takes as input the embedding of
words in the sentence aligned sequentially, and summarizes
the meaning of a sentence through layers of convolution and
pooling, until reaching a fixed length vectorial representation
in the final layer. CNN has some advantages: (1) it can main-
tain the word order information which is crucial to the short
sentences; (2) Nonlinear activation in the convolutional neu-
ral networks can learn more abstract characteristics.

3 Modeling Question and Answers with
Convolutional Neural Network

In this paper, we use CNN to encode the sentence. The origi-
nal CNN can learn sequence embeddings in a supervised way.
In our model, the parameters in CNN are learnt jointly with
our final objective function instead of separate training.
Given an input sentence s, we take the embeddings w; €
R™w of each word w in s to obtain the first layer of the CNN.

Convolution The embeddings for all words in the sentence
s construct the input matrix s € R *!s where I, denotes the
length of s. A convolutional layer is obtained by convolving
a matrix of weights (filter) m € R™*" with the matrix of
activations at the layer below, where m is the filter width.

For example, the first layer is obtained by applying a con-
volutional filter to the sentence matrix s in the input layer.
Dimension n,, and filter width m are hyper-parameters of the
network.
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Figure 2: Architecture of Neural Tensor Network.

k-Max Pooling Given a value k and a row vector p € RP,
k-max pooling selects the subsequence p¥, . of the k highest
values of p. The order of the values in p;, .. corresponds to
their original order in p. The k-max pooling operation makes
it possible to pool the & most active features in p. The pooling
layers preserve the order of the features, but are insensitive to
the specific positions of input sequences.

To fix the total number of convolutional layers, we use a
dynamic k-max pooling [Kalchbrenner et al., 2014] to set k
be a function of the length of the sentence and the depth of
the network d.

The k¢op = 1 is fixed at the k-max pooling layer after the
topmost convolutional layer, where n, is the length of sen-
tence embeddings. This guarantees that the input of the fully
connected layers is independent of the length of the input sen-
tence. However, at the intermediate convolutional layers, the
pooling parameter k is not fixed, and it is dynamically se-
lected in order to allow for a smooth extraction of higher or-
der and longer-range features.

Non-linear Feature Function After (dynamic) k-max
pooling is applied to the result of a convolution, a bias and a
non-linear function tanh are applied component-wise to the
pooled matrix.

Final Layer Different with the original CNN [Kalchbren-
ner et al., 2014], the final output of our CNN is a fixed-length
vector, which represents the embeddings v, € R™s of the in-
put sentence s. The parameters in CNN is learnt jointly with
our final objective function.

4 Matching Question and Answer with
Tensor Layer

To model the interactions between question and answer, we
need utilize some metrics to measure their relevance. Given
their vector representations, the traditional ways are to calcu-
late their Euclidean or cosine distance. However, these two
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ways cannot sufficiently take into account the complicated
interactions.

In this paper, we model the matching degree of two sen-
tences with a non-linear tensor layer, which has been suc-
cessfully applied to explicitly model multiple interactions of
relational data [Socher et al., 2013a]. A tensor is a geometric
object that describes relations between vectors, scalars, and
other tensors. It can be represented as a multi-dimensional
array of numerical values.

Given a question ¢ and its corresponding answer a, we first
use two CNNs to model them into the fixed vectors q and a
respectively. Following the Neural Tensor Network (NTN)
[Socher ez al., 2013al, we place a tensor layer on top of the
two CNNs (introduced in Section 3) to model the relations of
the question and its answer. Figure 2 shows a visualization of
our general architecture.

The tensor layer calculates the matching degree of a
question-answer pair by the following score function:

s(¢q,a) =ulf (ng[”]

where f is a standard nonlinearity applied element-wise,
MILrER™ XX iq 4 tensor and the bilinear tensor product
ng[l:r]va results in a vector h € R", where each en-
try is computed by one slice ¢ = 1,--- ,r of the tensor:
hi = vIM'v,; the other parameters are the standard form
of a neural network: V. € R"™*?"s b € R" andu € R".

We call the whole architecture of our model convolutional
neural tensor network (CNTN). The main advantage of
CNTN is that it can model the representations and interac-
tions jointly. The representations of words and sentences are
modeled with convolutional layers, and the interactions be-
tween two sentences are modeled with the tensor layer. The
final output is the matching score of two texts.

5 Training

We use the contrastive max-margin criterion [Bordes ef al.,
2013; Socher er al., 2013a] to train our model. Intuitively, the



max-margin criterion provides an alternative to probabilis-
tic, likelihood-based estimation methods by concentrating di-
rectly on the robustness of the decision boundary of a model
[Taskar er al., 2005]. The main idea is that each question-
answer pair in the training set C should receive a higher score
than a question-answer pair in which the answer is replaced
with a random answer of the other questions.

The parameters of our model are ©
(LWL n Weynsu, METT Vbl Among them,
L is words embeddings; W{, \;; and W are the param-
eters of the CNNs for question and answer respectively; the
rest parameters belong to the tensor layer.

The final objective function is

L= > [r—slga) +s(gd)++ 6|3

(g,a)€C (g,a’)€C’

@)

where v > 0 is a margin hyper-parameter, and (q,a’) is a
corrupted question-answer pair. C is the training collection
of question-answer pairs and C’ denotes the collection of all
corrupted question-answer pairs. We use Eq. 1 as the score
function s(-,-) to balance the efficiency and performance of
the algorithm.

To minimize the objective, we use stochastic gradient de-
scent(SGD) with the diagonal variant of AdaGrad [Duchi et
al., 2011]. The parameter update for the ¢-th parameter 6, ; at
time step t is as follows:

Ori = 0r—1,i —

(©))

p
Gt,i»
2

t
ZT:l gT,i
where p is the initial learning rate and g, € R!%! is the sub-
gradient at time step 7 for parameter 6;.

6 Experiments

To empirically demonstrate the effectiveness of our approach,
we use two datasets from different languages (English and
Chinese) in our experiments.

English For English, we collect the question-answer pairs
from Yahoo! Answers with the getByCategory function
provided in Yahoo! Answers API. More specifically, we
utilize the resolved questions under the top-level “Com-
puters & Internet” category. Finally, the English dataset
contains 312, 000 question-answer pairs.

Chinese For Chinese, we use a crawler to collect the
question-answer pairs from Baidu Zhidao website. We
also just use the questions under the “Computers & In-
ternet” category. Chinese sentences are segmented into
words in advance. Finally, the Chinese dataset contains
423, 000 question-answer pairs.

For the above two datasets, we only selected those resolved
questions.

6.1 Competitors

We compare our model with the following methods:

e OKkapi: The popular Okapi BM25 model [Robertson er
al., 1994] used in information retrieval.
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o TransLM: We use translation-based language model of
[Jeon er al., 2005] to calculate the similarity between
two short-texts. TransLM can be regarded as state-of-
the-art method for question retrieval.

NBOW+MLP: We first represent each short-text as the
sum of the embeddings of the words it contains. The
matching score of two short-texts are calculated with a
multi-layer perceptron (MLP) [Bengio, 2009] with the
embeddings of the two short-texts as input;

CNN+MLP: We first represent each short-text with
CNN, then a MLP is used to score the matching degree
of the two short-texts. This method is similar with [Hu
etal.,2014].

The first two methods are traditional methods and use dis-
crete word representation. The latter two methods use dis-
tributed vector to model sentences, then compare the repre-
sentation for the two sentences with MLP.

For initialization of parameters, we use word2vec
[Mikolov et al., 2013] to train word embeddings on
Wikipedia corpus for English and Chinese respectively. For
the other parameters, we use random initialization within
(0.01,0.01). The parameters which achieve the best perfor-
mance on the development set will be chosen for the final
evaluation. All the other models are trained on the same train-
ing set as our models.

6.2 Experiment I: Matching Question and
Answers

We select 10,000 original positive pairs as development set
and another 10,000 original positive pairs as test set. The rest
QA pairs are used for training. For each positive QA pair in
training set, we construct ten corrupted QA pairs as negative
instances by replacing the answer with negative sampling.

We first evaluate our model with five different settings of
the tensor layer and compare their matching abilities to pick
the correct answer to the corresponding question from the five
random negative answers.

e CNTN-I: We set the parameters r = 1, MU =1V =
0,b = 0,f = identity. The model is the most simpli-
fied model, which is just a cosine similarity.

CNTN-II: We set the parameters r = 1,V = 0,b =
0, f = identity. The model can be regarded as the bilin-
ear model.

CNTN-III: We set the parameters r 1,MHH = .
The model can be regarded as single layer MLP.

CNTN-IV: We set the parameter » = 1. This model is
the fully CNTN model.

CNTN-IV: We set the parameter » = 5. This model is
the fully CNTN model.

The other hyperparameters of our model are set as in Table
2, which are chosen on development datasets in consideration
of both accuracy and efficiency.

Table 3 shows the accuracy(P@1) of the above five models
on English and Chinese development sets. The fully CNTN
model with » = 5 (CNTN-V) achieves best performances.



Word embedding size Ny = 25
Initial learning rate p=0.1
Regularization A=10"*
CNN depth d=3
Filter width m=3
Sentence embedding size | ns = 50

Table 2: Some major hyperparameters of CNTN model
P@1
Methods English | Chinese
CNTN-I 68.2 60.1
CNTN-II 70.5 63.7
CNTN-II 67.5 61.0
CNTN-IV | 71.6 64.5
CNTN-V 75.8 68.5

Table 3: Comparisons of our model with different settings on
development sets.

We also find that the bilinear model (CNTN-II) is better than
the single layer MLP (CNTN-III). This verifies the hypothesis
that the tensor is effective to incorporate the strong interaction
of two sentences although the bilinear form can only model
simpler interactions. In comparison to bilinear models, the
fully CNTN has much more expressive power to model the
strong interactions of two sentences.

We use the fully CNTN in the final evaluations on the test
sets, and the comparisons of the other methods are shown in
Table 4. CNTN achieves best performance.

6.3 Experiment II: Question Retrieval

The motivation of our architecture is to learn semantic rep-
resentation and reduce the “lexical gap”. To do so, given a
queried question ¢, we first represent it in distributed repre-
sentation v; by DCNN. For each question-answer pair (g, a)
in CQA collections C, we use a mixture score to compute its
similarity with queried question .
(§,a) = argmax av v, + (1 — a)s(t, a), 4
(g,a)€C
where v, and v, are the distributed representations of
question-answer pair (g, a); s(t,a) is the score function of
CNTN defined in Eq. 1; « € [0, 1] is a hyperparameter and
optimized by searching with the step-size 0.05.
We randomly select 5,000 QA pairs as the development
set, another 5, 000 pairs as the test set. To obtain the ground-

P@1
Methods English | Chinese
Okapi 35.6 30.8
TransLM 48.5 45.3
NBOW+MLP 66.8 65.4
CNN+MLP 68.5 66.1
CNTN 70.7 68.1

Table 4: Comparisons of different models on test sets.
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Figure 3: Balancing the contributions of question and answer
on development sets.

English Chinese
Methods ['\1Ap [ p@10 | MAP | P@10
Okapi 325 | 220 | 293 | 203
TransLM | 38.6 | 252 | 307 | 22.0
NBOW | 393 | 268 | 315 | 233
CNN 418 | 274 | 323 | 241
CNTN | 439 | 28.1 | 335 | 249

Table 5: Question retrieval performances on test sets.

truth of question retrieval, we employ the Vector Space Model
(VSM) to retrieve the top 20 results for each question in de-
velopment and test set. The top 20 results do not include
the queried question itself. Given a returned result by VSM,
two annotators are asked to label it with “relevant” or “irrel-
evant”. If an annotator considers the returned result semanti-
cally equivalent to the queried question, he labels it as “rel-
evant”; otherwise, it is labeled as “irrelevant”. If a conflict
happens, the third annotator will make the final judgement.

Since the fully CNTN model with » = 5 (CNTN-V)
achieves best performances, we just use the same parameters
as CNTV-V. The only difference is that we need to decide «
in Eq. (4) on the development set.

We use the mean average precision (MAP) and PQ10 to
evaluate the effectiveness of each method, which are widely
used in question retrieval [Jeon ef al., 2005; Xue et al., 2008;
Zhou et al., 2011]. MAP rewards the methods that return
relevant questions early and also rewards correct ranking of
the results. P@10 reports the fraction of the top ten questions
retrieved that are relevant.

In Eq. (4), we use the parameter « to balance the relative
contributions of question and answer. Figure 3 illustrates how
the value of « affects the performance of question retrieval
in terms of MAP. The result was obtained with both the En-
glish and Chinese development sets. We see that our model
performs best when « is around 0.7, which indicates a good
balance tends to benefit from question more than answer.

Finally, we compare our model with the other methods
with o = 0.7. The experiment results on test sets are illus-
trated in Table 5, which show that our model outperforms the
others on both English and Chinese datasets.

For the above two experiments, we conducted a signifi-
cance test (t-test) on the improvements of our model over the
others. The result indicates that the improvements are statisti-



cally significant (p-value ; 0.05) in terms of all the evaluation
measures.

7 Discussions
We can summarize some findings from these experiments:

1. The simple sum of word embeddings (NBOW) yields
reasonably better results than the traditional discrete
represents. The reason is that word embeddings get ben-
efits from dense representation and reduce the negative
impact of lexical gap.

CNN is better than NBOW, which indicates CNN can
capture more informative features, such as the salient
words or the sequential structures of sentences. The ef-
fectiveness of these similar features are also verified in
traditional retrieval methods [Carmel et al., 2014].

Our model (CTNT) outperforms others significantly
since our model can model the complicated interactions
between question and answer than others. The simple
inner-product (CTNT-I) and bilinear model (CNTN-II)
also cannot sufficiently model the interaction between
the sentences. The importance of the interaction of two
sequences is also reported in [Hu et al., 2014]. Our
model can be regarded as a kind of metric learning
methods [Xing et al., 2002] and learn a good metric to
model the relevance of two sentences.

The performance of question retrieval can be improved
by incorporating the answer part, which also provides
an evidence for the effectiveness of our model in cap-
turing the relevance information between question and
answer. This is compatible with the results in [Zhou et
al., 2011]. They also found that it would be helpful to
bridge the lexical gap by incorporating the answer in-
formation.

The performances on Chinese dataset are slightly worse
than English. The reason behind this could be that there
are some errors in Chinese word segmentation.

Compared with the other neural network based methods
for matching texts pairs [Wang er al., 2010; Lu and Li, 2013;
Hu et al., 2014], our model also aims to seek a relevance met-
ric in a semantic vector space. However, our method can deal
with more complicated interactions with the tensor layer than
the other methods. Meanwhile, our convolutional layers con-
vert the texts into fix-length vectors and keep the important
sequence information which are lost in bag-of-words repre-
sentations [Wang et al., 2010; Lu and Li, 2013]. Different to
the binary max pooling CNN in [Hu er al., 2014], we use a
dynamic k-max pooling in [Kalchbrenner et al., 2014]. The
binary max pooling need deeper networks, therefore it is hard
to train for long sentences. The binary max pooling works
well for very short texts but is not suitable for matching QA
pairs since that the texts in QA pairs are relatively longer, es-
pecially in answer parts.

8 Conclusion

We propose a convolutional neural tensor network (CNTN)
architecture to model the questions and answers in CQA.
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CNTN can model the complicated interactions between ques-
tion and answer. It is effective in resolving the problem of
lexical chasm for question retrieval.

For future research, we will extend our model to capture
more detailed interactions according to the category structure
of questions. We believe that the interactions should vary
with the different categories or topics of questions. More-
over, we also wish to investigate the ability of our model for
matching the questions and experts in answerer recommen-
dation.
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