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Abstract

Motivation: Disease diagnosis oriented dialogue system models the interactive consultation procedure as

Markov Decision Process and reinforcement learning algorithms are used to solve the problem. Existing

approaches usually employ a flat policy structure that treat all symptoms and diseases equally for action

making. This strategy works well in the simple scenario when the action space is small, however, its

efficiency will be challenged in the real environment. Inspired by the offline consultation process, we

propose to integrate a hierarchical policy structure of two levels into the dialogue system for policy learning.

The high-level policy consists of a master model that is responsible for triggering a low-level model, the low-

level policy consists of several symptom checkers and a disease classifier. The proposed policy structure

is capable to deal with diagnosis problem including large number of diseases and symptoms.

Results: Experimental results on three real-world datasets and a synthetic dataset demonstrate that our

hierarchical framework achieves higher accuracy and symptom recall in disease diagnosis compared with

existing systems. We construct a benchmark including datasets and implementation of existing algorithms

to encourage follow-up researches.

Availability: The code and data is available from https://github.com/FudanDISC/DISCOpen-MedBox-

DialoDiagnosis

Contact: 21210980124@m.fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the development of electronic medical records (EMRs), researchers

have explored different machine learning approaches for automatic

diagnosis (Shivade et al., 2013; Richens and Buchard, 2022). Although

impressive results have been reported for the identification of

various diseases, e.g. heart failure with preserved ejection fraction

(HFpEF) (Jonnalagadda et al., 2017) and autism spectrum disorders

(ASDs) (Doshi-Velez et al., 2014), they rely on well-established EMRs

which are labor-intensive to build. Moreover, the automatic diagnosis of

a certain disease requires EMRs of that type for model training, and is

difficult to be extended to other types of diseases.

To relieve the pressure of constructing EMRs, researchers (Wei et al.,

2018; Xu et al., 2019) introduce the task-oriented dialogue system to

request symptoms automatically from patients for disease diagnosis. Since

the disease consultation is an interactive procedure with multiple time

steps, they formulate the task as Markov Decision Processes (MDPs) and

employ reinforcement learning (RL) based methods for the policy learning.

In each round of interaction, the agent either chooses a symptom to request

or makes the diagnosis via selecting an action from the joint action space

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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of symptoms and diseases. Correct symptom query and disease diagnosis

will be rewarded, and the policy is learned by maximizing the expected

cumulative rewards.

After that, reinforcement learning becomes the first choice for

researchers in this field (Tang et al., 2016; Kao et al., 2018; Peng

et al., 2018; Coronato et al., 2020; Yu et al., 2021). (Kao et al., 2018)

presented a context-aware hierarchical reinforcement method, using policy

gradients to make decisions based on the patient’s personal information

and explicit symptoms. (Peng et al., 2018) proposed reward shaping and

feature rebuilding techniques to help agents effectively learn a better

strategy and (Chen et al., 2019) introduced a new multiple action policy

representation to help agents suggest medical tests to facilitate disease

diagnosis. Also, many researchers tried to combine the RL-based and non-

RL approaches. (Xu et al., 2019) introduced the knowledge graph into

their dialogue system, (Xia et al., 2020) applied GAN as a policy network

to capture the relations between different symptoms, and (Lin et al., 2020)

proposed DSMAD method which inspired by the introspective decision-

making process of human to make the diagnosis process more reliable.

Recently, (Hou et al., 2021) proposed a multi-level reward modeling

approach and (Teixeira et al., 2021) proposed an approach to automating

the generation of a dialogue manager to achieve the predictability and

reliability. However, existing policies are designed with flat and monolithic

structures (such as MLPs), which are not salable to deal with scenarios

including a large number of diseases and symptoms.

In the actual diagnosis scenario, we find that the relationship between

diseases and symptoms can help us classify the disease. In Figure 1, we

present the proportion of symptoms related to four different diseases,

i.e., children bronchitis, upper respiratory infection, children functional

dyspepsia and infantile diarrhea. It shows that a particular disease is usually

related to a certain group of symptoms. In offline consultation, doctors also

do the pre-examination and triage according to the different symptoms

that the patient suffered, then doctors in different departments will make a

more detailed diagnosis. This method significantly reduces the workload

of individual doctors and enables them to be more specialized in a certain

field.

Hierarchical Reinforcement Learning (HRL) (Parr and Russell, 1998;

Sutton et al., 1999), in which multiple layers of policies are trained

to perform decision making, conforms to the problem-solving logic for

disease diagnosis in the real environment. HRL has been successfully

applied to different scenarios, inter alia, course recommendation (Zhang

et al., 2019), visual dialogue (Zhang et al., 2018), relation extraction (Feng

et al., 2018) and composite tasks with slot constraints (Lipton et al.,

2018). In each step, the agent chooses either a one-step “primitive" action

or a “multi-step" action (option). (Schatzmann et al., 2007) presented a

POMDP dialogue system for simulating user behavior, which can train

and test a prototype system. Then, researchers showed that hierarchical

reinforcement learning dialogue agents are feasible and promising in

large-scale systems (Cuayáhuitl et al., 2010). In order to improve the

generalization ability of HRL model, (Florensa et al., 2017) proposed

a general framework that first learns useful skills (high-level policies) in

an environment and then leverages the acquired skills for learning faster

in downstream tasks. Then, (Budzianowski et al., 2017) applied HRL

to multi-domain dialogue management, which showed the potential of

HRL to facilitate policy optimization for more sophisticated multi-domain

dialogue systems. (Lipton et al., 2018) used HRL to efficiently learn

the dialogue manager that operates at different temporal scales. Up to

now, HRL has been successfully applied to different tasks and reached

promising results. (Wang et al., 2018; Zhang et al., 2018; Takanobu

et al., 2018; Feng et al., 2018; Guo et al., 2018; Zhang et al., 2019;

Wan et al., 2020; Duan et al., 2020). Most existing works decompose the

corresponding task into two steps manually, where the first step is treated

by the high-level policy while the second step is treated by the low-level

policy. This motivates us to divide the online diagnosis tasks into different

levels following the setting of departments in the hospital and design a

hierarchical structure for symptom acquisition and disease diagnosis.

In this paper, we propose to build a dialogue system with a hierarchy

of two levels for automatic disease diagnosis using HRL methods. The

high-level policy consists of a model named master and the low-level

policy consists of several workers and a disease classifier. The master is

responsible for triggering a model at a low level. Each worker is responsible

for inquiring about symptoms related to a certain group of diseases while

the disease classifier is responsible for making the final diagnosis based

on information collected by workers. The proposed framework imitates a

group of doctors from different departments diagnosing a patient together.

Among them, each worker acts like a doctor from a specific department,

while the master acts like a committee that appoints doctors to interact with

this patient. When the information collected from workers is sufficient, the

master would activate a separate disease classifier to make the diagnosis.

Models in the two levels are trained jointly for better disease diagnosis. We

test our model in three large real-world datasets and a synthetic dataset.

Experimental results demonstrate that the performance of our hierarchical

framework outperforms other state-of-the-art approaches.

We summary our contribution as follows: 1) We propose a new RL-

based method for automatic diagnosis. It simulates the real scene of

clinical practice, and assigns patients to different workers through high-

level policy, thereby reducing the action space and improving training

efficiency. Also, the method can be compatible with different network

models and training strategies. 2) We perform systematical evaluation to

test the performance of our model on three public datasets from the real

environment and a synthetic datasets. Overall experiment results show the

advantage of our model compared to state-of-the-art baselines and further

analysis confirms the effectiveness of each component in our framework. 3)

We release a toolkit with the implementation of all existing baseline models

and datasets. The toolkit can be used as a benchmark for dialogue-based

disease diagnosis.

2 Materials and Methods

In this section, we introduce our hierarchical reinforcement learning

framework for disease diagnosis. We start with the formulation of Markov

Decision Process for automatic disease diagnosis, and then introduce the

hierarchical setting.

2.1 Markov Decision Process Setup for Disease Diagnosis

As for RL-based models for automatic diagnosis, the action space of agent

is A = D ∪ S , where D is the set of all diseases and S is the set of all

symptoms that associated with these diseases. Given the state st ∈ S at

turn t, the agent takes an action according to it’s policy at ∼ π(a|st)

and receives an immediate reward rt = R(st, at) from the environment

(patient/user). If at ∈ S , the agent chooses a symptom to inquire the

patient/user. Then the user responds to the agent with true/false/unknown.

If at ∈ D , the agent informs the user of the corresponding disease as

the diagnosis result and the dialogue session will be terminated as the

success/failure in terms of the correctness of the diagnosis.

2.2 Hierarchical Policy Structure for Disease Diagnosis

To reduce the large action space, we extend the flat-RL structure to a

hierarchical structure with two-layer policies for automatic diagnosis.

Following the options framework (Sutton et al., 1999), our framework is

illustrated as in Figure 2(a). There are four components in our framework:

master, worker, disease classifier, and user simulator. At turn t, the state st

will be encoded as one-hot vectors that reflect the status of each symptom
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Fig. 1: Disease distribution over symptoms in MZ-4 (see section 3.1). X-axis stands for symptoms and y-axis is the proportion. Each bar describes the

disease distribution given a symptom.
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(b) Master-worker framework (inference)

Fig. 2: The training and inference process of our model. (a) The framework of our hierarchical reinforcement learning model with two-layer policies. (b)

Illustration of the diagnosis process of our model with interactions between components of two levels. wi is the action invoking worker wi and d is the

action invoking disease classifier.

and number of turns for the master and worker network, and only symptom

information will be encoded for the disease classifier. An illustration of

the diagnosis process with interactions between models in two levels is

presented in Figure 2(b).

2.2.1 Master for classification

The master controls the higher policy of the agent. At each turn, the master

can choose whether to activate the worker to collect symptom information

or disease classifier to make a decision. Once the master activates a worker,

this worker will interact with the user for N turns until the subtask is

terminated.

The learning problem of the master can be formulated as a

Semi-Markov Decision Process (SMDP), where the extrinsic rewards

returned can be accumulated as the immediate rewards for the

master (Ghavamzadeh, 2005). That is to say, after taking an action amt ,

the reward rmt for the master can be defined as:

rmt =

{

∑N
t′=1 γ

t′re
t+t′

, if amt = wi

ret , if amt = d
(1)

where γ is the discounted factor and wi, d is the action to activate the

workerwi and disease classifier. The objective of the master is to maximize

the extrinsic reward, thus we can write the master’s loss function as follows:

L(θm) = Es,am,rm,s′∼Bm [(y −Qm(s, am; θm))2] (2)

where y = rm + γN maxam′ Qm(s′, am′; θ−m), θm, θ−m is the

network parameter at current and previous iteration, Bm is the fixed-length

buffer of samples for master.

2.2.2 Worker & Disease Classifier for interaction

The worker controls the lower policy of the agent and interacts with the

patient to collect information for a specific group of symptoms. Once the

worker wi is invoked, it will take the corresponding state representation

si from the master and generate an action ai ∈ Aw
i .

After taking action ai ∈ Aw
i , the state representation will be updated

and worker wi will receive an intrinsic reward rit from the user simulator.

So the objective of workers is to maximize the expected cumulative

discounted intrinsic rewards. The loss function of workerwi can be written

in the following way:

L(θiw) = Esi,ai,ri,si′∼Bw

i

[(yi −Qi
w(si, ai; θiw))2] (3)

Once the disease classifier is activated by the master, it will take the

symptom information as input and output a vector p ∈ R
|D|, which

represents the probability distribution over all diseases. The disease with

the highest probability will be returned to the user as the diagnosis result.

Also, the disease classifier will be jointly trained with the master and

worker through supervised learning.

2.2.3 User Simulator & internal critic for reward generation

Following (Wei et al., 2018) and (Xu et al., 2019), we set up a user simulator

to interact with the agent. At the beginning of each dialogue session,

the user simulator samples a user goal from the training set randomly.

Each piece of user goal contains two kinds of symptoms, namely explicit

ones (obtained from the self-report) and implicit ones (obtained from the

dialogues). Explicit symptoms will be directly provided to the agent as

initial information at the beginning, and the agent needs to discover the

implicit symptoms during the interaction with the patient. The simulator

will initialize the dialogue session based on the explicit symptoms and

interacts with the agent based on the implicit symptoms.

In addition, the internal critic will generate a reward to the master and

worker due to the action and the dialogue status. In the higher level, the

dialogue session will be terminated as successful and get a positive reward

if the agent makes the correct diagnosis, or failed if the informed disease

is incorrect or the dialogue reaches the maximal turn T . In the lower level,

a worker is terminated as successful when a correct symptom is requested

by the agent and failed when the number of turns reaches the upper limit

of subtask turn T sub.
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2.3 Implementation details

To group diseases with similar symptoms, we formulate the dataset as

a disease-symptoms vector, which represents the number of times that a

symptom occurs in each disease. Then we compare the similarities of the

vectors on the training set and divide the diseases with higher similarity

(above 0.5) into one group.

Also, to solve the problem of sparse action space and force the master to

choose an efficient worker, we follow (Peng et al., 2018) and use the reward

shaping method to add auxiliary reward to the original extrinsic reward

while keeping the optimal reinforcement learning policy unchanged.

In practice, the ǫ for the master and all the workers are all set to 0.1.

For the master, the maximal dialogue turns T is set to 10, it will receive an

extrinsic reward of +20 if the master informs the right disease. Otherwise,

it will receive an extrinsic reward of -100 if the dialogue turn reaches the

maximal turn. In other states, the extrinsic reward is 0. Moreover, the sum

of the extrinsic rewards (after reward shaping) over one subtask will be

the reward for the master. The maximal dialogue turns T sub is set to 2 for

each worker.

For the master and all the workers, the neural network of DQN is a

three-layer network with two dropout layers and the size of the hidden

layer is 512, learning rate for the DQN network is set to 0.0005. All

parameters are set empirically and settings for the datasets are the same.

For the disease classifier, the neural network is a two-layer network with

a dropout layer. Moreover, it’s trained every epoch during the training

process of the master.

During the training process, it will take about 5000 epochs for the

model to reach convergence, which takes about 18 hours given an NVIDIA

RTX 2080 Ti. For the best-performing model, γ is set to 0.95, discounted

factor γw is set to 0.99, λ in reward shaping is set to +1.

3 Experiment Implementation

We evaluate all methods on three dialogue datasets (MZ-4 (Wei et al.,

2018), MZ-10 and Dxy (Xu et al., 2019)) collected in the real environment

and one synthetic dataset SymCat-SD-90. We construct MZ-10 as an

expansion on the basis of MZ-4 by including more diseases and samples

of patients. Table 1 shows the details of all datasets used in this paper.

Also, we evaluate the performance of different methods in terms of

disease and symptoms. In terms of disease, we use the accuracy of disease

judgment as an indicator (Acc.). In terms of symptoms, we use match

rate of symptoms (M.R.) which is the ratio of the number of corrected

recalled implicit symptoms to the total number of implicit symptoms. At

the same time, we report the average number of turns (Avg. T) conducted

for dialogue sessions for reference.

3.1 Real-world Dataset

MZ-4 This is the first dataset collected from a real environment for the

evaluation of task-oriented dialogue system (Wei et al., 2018). It includes

4 diseases, 230 symptoms, and 1,733 user goals. Each user record consists

of the self-report provided by the user and conversation text between the

patient and a doctor. Symptoms extracted from self-report are treated as

explicit symptoms and the ones extracted from the conversation are implicit

symptoms. The raw data is collected from the pediatric department on a

Chinese online healthcare community1 , and annotators will follow the

BIO(begin-in-out) schema for symptom identification. After that, experts

manually link each symptom expression to a concept on SNOMED CT2.

1 http://muzhi.baidu.com

2 https://www.snomed.org/snomed-ct

Dxy A Dialogue Medical dataset (Xu et al., 2019) contains data

from a Chinese online healthcare website3 . They annotate five types

of diseases, including allergic rhinitis, upper respiratory infection,

pneumonia, children hand-foot-mouth disease, and pediatric diarrhea.

Also, they extract the symptoms and normalize them into 41 symptoms.

This dataset contains 527 user goals, including 423 for training and 104

for testing.

MZ-10 It is expanded from MZ-4 to include 10 diseases, consisting of

typical diseases of the digestive system, respiratory system, and endocrine

system. Following (Wei et al., 2018), we collect medical consultation

records for 10 pediatric diseases. Then we annotate the samples to form the

dataset. Based on the BIO schema, we tagged each symptom with an extra

label: Positive, Negative, or Not Sure. Besides, we link all the symptoms

to the most relevant concept on SNOMED-CT for normalization. For

labeling, we developed a web-based tool and recruited undergraduates and

postgraduates in medical school to annotate the corpus. All the annotators

are people who are willing to participate and are over the age of 18. Each

dialogue is annotated twice and inconsistent parts are further finalized by a

third annotator. The kappa coefficient of symptom labels is 92.71%, which

represents a high consistency between the two annotations.

3.2 Synthetic Dataset

The number of diseases and user goals in the real-world dataset is still

limited. To show the effectiveness of the HRL method, we build a synthetic

dataset (SD) following (Kao et al., 2018) for further analysis of the method,

named SymCat-SD-90. It is constructed based on a symptom-disease

database called SymCat4 . There are 801 diseases in the database and we

classify them into 21 departments (groups) according to the International

Classification of Diseases (ICD-10-CM)5 . We choose 9 representative

departments from the database, each department contains the top 10

diseases according to the occurrence rate in the Centers for Disease Control

and Prevention (CDC) database.

In the SymCat database, each disease is linked with a set of symptoms,

where each symptom has a probability indicating how likely the symptom

is identified for the disease. Given a disease and its related symptoms,

the generation of a user goal follows two steps. First, for each related

symptom, we sample the symptom-based on the probability. Second, a

symptom is chosen randomly to be the explicit one (same as symptoms

extracted from self-report in RD) and the rest of the true symptoms are

treated as implicit ones.

3.3 Models for Comparison

We compare our model with some state-of-the-art baselines for disease

diagnosis.

Flat-DQN (Wei et al., 2018) This is the first work that treats the dialogue-

based disease diagnosis as an MDP problem and employ an one-layer

policy structure based on DQN to choose actions in each dialogue turn.

REFUEL (Peng et al., 2018) This work proposes two tricks to improve the

performance of flat-DQN, namely reward shaping and feature rebuilding.

Reward shaping aims to encourage the agent to discover positive symptoms

more quickly by increasing the reward assigned to a correct symptom

enquiry and penalizing incorrect ones. Feature rebuilding is introduced as

an auxiliary component in the training process that aims to re-construct

ground-truth symptom given the current information.

3 https://dxy.com/

4 www.symcat.com

5 https://www.cdc.gov/nchs/icd/
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Table 1. Overview of Datasets. We report the number of user goal, the number of diseases, the average number of implicit symptoms in each sample and the total

number of symptoms in the dataset.

Name ♯ of user goal ♯ of diseases avg. ♯ of im. sym. ♯ of sym.

MZ-4 1,733 4 5.46 230

MZ-10 4,116 10 6.60 331

Dxy 527 5 1.67 41

SymCat-SD-90 30,000 90 2.60 266

KR-DS (Xu et al., 2019) This model proposes to use external knowledge

to further improve the diagnosis performance of DQN. The overall

framework contains three components, namely DQN-based policy

network, refinement module based on co-occurrence relationship between

diseases and symptoms, and a conditional probability matrix based on

knowledge graph. The final decision is made integrating output from the

three components to choose actions in each diaglogue turn.

GAMP (Xia et al., 2020) This model integrates the Generative Adversarial

Network (GAN) with the reinforcement learning model. The DQN-based

policy network is employed the generator to choose the action and a

discriminator is trained to determine how good the action is with a

discriminative reward. Moreover, an independent disease classifier is used

to evaluate the contribution of the generated symptom (i.e., action) with a

mutual information reward. Both rewards are combined as the final reward

to update the policy network.

HRL-pretrained (Kao et al., 2018) This model utilizes a hierarchical policy

structure of two levels. There are two major differences between their

model and ours. Firstly, the master in the higher level and workers in the

lower level are trained separately in their setup while we jointly train the

master and workers to enforce the interaction between the two components.

Secondly, the diagnosis of the disease is handed over to workers in their

setup while we introduce an additional disease discriminator that helps to

allow workers to focus on symptoms. To some extent, this model can be

treated as a pipeline training version of our model.

In the supplementary material, we use a table to show the main

differences between models. All these above mentioned methods haven’t

disclosed their codes. For a fair comparison and encourage the follow-up

researchers, we reproduce the their algorithms and release a toolkit6 . It

can be used as the benchmark for dialogue-based disease diagnosis.

4 Results and Discussions

We report the performance of different approaches on real-world datasets

and the performance on the synthetic dataset. Then, we perform the

ablation study to evaluate the effectiveness of different components in

the model. After that we present two analysis results to reveal the stability

of the disease classifier and the efficiency of workers.

4.1 Performance on Real-world Datasets

In this section, we test all methods on three real-world datasets and compare

the effectiveness of different models in terms of accuracy, average turns,

and match rate. Table 2 shows the overall results. We have following

findings.

- Flat-DQN has limited ability to extract symptom information. Model

performance drops significantly as the number of symptoms rises.

- REFUEL performs better than Flat-DQN in symptom extraction and

also has a slight improvement in disease diagnosis. This proves the

6 https://github.com/FudanDISC/DISCOpen-MedBox-DialoDiagnosis

effectiveness of reward shaping and feature rebuilding.

- Compared with other methods, KR-DS maintains a higher match rate

and accuracy on the three datasets. This indicates the effectiveness of

introducing external knowledge to the RL-based agent.

- The symptom extraction ability of GAMP declines significantly with the

increase in the number of symptoms, which also limits its performance.

- Our proposed model HRL generates the best performance in symptom

extraction and disease classification among all the models. This confirms

the effectiveness of our proposed hierarchical model.

4.2 Performance on Synthetic Dataset

In order to further prove the effectiveness of our model, we conduct

the experiment on synthetic dataset. Experiment results of different

approaches on synthetic datasets are shown in Table 3. Through the results,

we can get following findings.

- It is difficult for models with a flat policy structure to generate a good

results on this dataset. Flat-DQN, KR-DS, REFUEL and GAMP perform

similarly to each other. Besides, Both Flat-DQN and GAMP tend to

make the diagnosis with a very short length of dialogue process. - The

performance of HRL-pretrained is much better than that of other methods

designed with flat and monolithic structure. This indicates the effectiveness

of the hierarchical framework.

- Our proposed model HRL generates the best performance among all the

models. This confirms the stability of our model.

4.3 Ablation Studies

The result of ablation study is shown in Table 2. We compare several

versions of HRL models. We remove the master and merge diseases into

a single group to form a model with flat policy structure (denoted as HRL

(w/o grouped). Besides, we remove the separate disease discriminator

and hand over the diagnosis action to workers (denoted as HRL (w/o

discriminator)). Experiment results show that HRL (ours) performs better

than HRL (w/o discriminator) and HRL (w/o grouped). This indicates

the effectiveness of extra disease classifier and the hierarchical policy

structure. It is noteworthy that after we remove the disease classifier, the

match rate of HRL(w/o discriminator) performs better than HRL(ours) on

all three real-world datasets. This maybe because the reward for correctly

predicting disease is higher than the reward for correctly predicting

symptoms. This makes the model tend to make a final diagnosis rather

than a symptom inquiry when it is confident enough, causing the model

to ignore some symptoms that have less impact on the result. Therefore,

the match rate of HRL will be smaller than the version without the disease

discriminator.

4.4 Stability of Disease Classifier

To have a deeper analysis of the user goals which have been informed of the

wrong disease by the agent, we collect all the wrong informed user goals

and present the error matrix in Figure 3. It shows the disease prediction

result for all the 9 groups. We can see the color of the diagonal square is

darker than the others, which means the wrongly predicted disease and the
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Table 2. Overall performance on real-world datasets. We conduct each experiment 5 times, and the reported number is the average. − denotes missing numbers,

and Acc., M.R, Avg. T are the abbreviations of Accuracy, Match Rate and Average Turns respectively. To make the results comparable, we keep all settings except

the agent policy the same. Numbers in Bold are the best in each column.

Dxy MZ-4 MZ-10

Model Acc. M.R. Avg. T Acc. M.R. Avg. T Acc. M.R. Avg. T

Flat-DQN 0.731 0.110 1.96 0.681 0.062 1.27 0.408 0.047 9.75

REFUEL 0.721 0.186 3.11 0.716 0.215 5.01 0.505 0.262 5.50

KR-DS 0.740 0.399 5.65 0.678 0.177 4.61 0.485 0.279 5.95

GAMP 0.731 0.268 2.84 0.644 0.107 2.93 0.500 0.067 1.78

HRL (w/o grouped) 0.731 0.297 6.61 0.689 0.004 2.25 0.540 0.114 4.59

HRL (w/o discriminator) − 0.512 8.42 − 0.233 5.71 − 0.330 8.75

HRL (ours) 0.779 0.424 8.61 0.735 0.229 5.08 0.556 0.295 6.99

Classifier Lower Bound 0.682 − − 0.671 − − 0.532 − −

Classifier Upper Bound 0.846 − − 0.755 − − 0.612 − −

Table 3. Overall performance on SymCat-SD-90 dataset. We conduct all

experiments 5 times, and the reported number is the average.− denotes missing

numbers, and Acc., M.R, Avg. T are the abbreviations of Accuracy, Match Rate

and Average Turns respectively. Numbers in Bold are the best in each column.

Model Acc. M.R. Avg. T

Flat-DQN 0.343 0.023 1.23

KR-DS 0.357 0.388 6.24

REFUEL 0.347 0.161 4.56

GAMP 0.267 0.077 1.36

HRL-pretrained 0.452 − 3.42

Ours 0.504 0.495 6.48

Classifier Lower Bound 0.308 − −

Classifier Upper Bound 0.781 − −

correct disease are in the same group. This is reasonable because diseases in

the same groups usually share similar symptoms and are therefore difficult

to be distinguished. On the other hand, it also proves that even if the model

cannot make correct predictions, it can still assist in real consultations.

From ICD-10-CM, Group 7 (Diseases of the eye and adnexa) is prone

to misjudgment within the group. For misjudgments between groups, the

most likely ones are the Group 4 (Endocrine, nutritional and metabolic

diseases) and Group 14 (Diseases of the genitourinary system), Group

6 (Diseases of the nervous system), and the Group 13 (Diseases of the

musculoskeletal system and connective tissue).

It should be pointed out that although we say “the disease classifier

can assist in real consultations", this does not mean that the treatment

for these diseases is the same. Diseases with similar symptoms may

have completely different treatment options. In practice, we still need

professional physicians to make the final decision. However, we believe

that when the model can include more information (such as medical

examinations, past medical history, etc.), more accurate judgments can

be made.

4.5 Efficiency of Different Workers

While proving the effect of the disease classifier, we also hope that the

workers in each group can also play a positive role during the judgment.

We evaluate the performance of workers in terms of success rate, average

intrinsic rewards, and match rate. The results can be seen in Table 4. We

found most of the workers can successfully exit by querying the symptoms

that which patient suffered. It proves that workers in different groups can

learn the symptom characteristics of the group, and use the knowledge to

guide the consultation process.

Fig. 3: The error analysis for the disease classifier. The square with true

group i and predicted group j means a disease in group i is misclassified

into group j, the darker the color, the higher the value.

Table 4. The performance of different workers in SymCat-SD-90 dataset.

Group id Success rate Ave intrinsic reward Match rate Activation times

1 48.6% 0.031 16.74% 0.615

4 54.6% -0.150 5.02% 0.375

5 38.8% -0.013 7.96% 3.252

6 48.0% -0.036 9.58% 0.942

7 48.3% 0.057 18.57% 1.280

12 43.0% 0.021 11.26% 0.666

13 52.4% -0.138 7.18% 0.823

14 72.2% -0.111 3.77% 0.614

19 47.4% 0.031 22.72% 1.124

Average 50.3% -0.041 10.49% 1.077

5 Conclusion

In this work, we formulate the problem of disease diagnosis as a

hierarchical policy learning problem, where symptom acquisition and

disease diagnosis are assigned to different kinds of workers at the lower

level of the hierarchy. The experimental results on all datasets demonstrate

that our hierarchical model outperforms other RL-based models in both

disease accuracy and symptom recall. Since the input only contains
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symptom information, and the reinforcement learning model is sometimes

not stable enough to have a statistically unbiased estimate of future

expectations, the model cannot make a completely accurate diagnosis.

But for now, we still believe that hierarchical architecture is the most

reasonable structure in this field. At the same time, this method can also

be integrated with other methods, such as the knowledge graph method, or

adopting more advanced reinforcement learning techniques for master and

worker. In the future, we would like to explore the dense representation

of symptoms and diseases to improve the ability of generalization for

automatic diagnosis.
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