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Abstract
Recently, the long short-term memory neural net-
work (LSTM) has attracted wide interest due to its
success in many tasks. LSTM architecture consists
of a memory cell and three gates, which looks sim-
ilar to the neuronal networks in the brain. However,
there still lacks the evidence of the cognitive plausi-
bility of LSTM architecture as well as its working
mechanism. In this paper, we study the cognitive
plausibility of LSTM by aligning its internal archi-
tecture with the brain activity observed via fMRI
when the subjects read a story. Experiment results
show that the artificial memory vector in LSTM can
accurately predict the observed sequential brain ac-
tivities, indicating the correlation between LSTM
architecture and the cognitive process of story read-
ing.

1 Introduction
In recent years, biologically-inspired artificial neural net-
works have become a focused topic in the field of computer
science [Hinton and Salakhutdinov, 2006; Bengio, 2009;
Schmidhuber, 2015]. Among the various network archi-
tectures, long short-term memory neural network (LSTM)
[Hochreiter and Schmidhuber, 1997] has attracted recent in-
terest and gives state-of-the-art results in many tasks, such
as time series prediction, adaptive robotics and control, con-
nected handwriting recognition, image classification, speech
recognition, machine translation, and other sequence learning
problems [Schmidhuber, 2015]. LSTM is an extension of the
simple recurrent neural network (RNN). It employs three gate
vectors to filter information and a memory vector to store the
history information. This mechanism can help encode long-
term information better than simple RNN. Despite the biolog-
ical inspiration of the architecture desgin of LSTM [O’Reilly
and Frank, 2006] and some efforts in understanding LSTM
memory cell [Karpathy et al., 2015], there still lacks the ev-
idence of the cognitive plausibility of LSTM architecture as
well as its working mechanism.

In this paper, we relate LSTM struture with the brain ac-
tivities during the process of reading a story. In parallel with
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the fMRI experiment [Wehbe et al., 2014a], we train a LSTM
neural network and use it to generate the sequential represen-
tation of the same story. By looking for the potential align-
ment between the representations produced by LSTM and the
neural activities recorded by fMRI at the same time, we are
able to explore the cognitive plausibility of LSTM architec-
ture per se.

Although some previous works [Mitchell et al., 2008;
Pereira et al., 2011; Pereira et al., 2013; Schwartz et al., 2013;
Devereux et al., 2010; Murphy et al., 2012] have tried to use
computational models to decode the human brain activity as-
sociated with the meaning of words, most of them focused
on the isolate words. Recently, [Wehbe et al., 2014b] studied
the alignment between the latent vectors used by neural net-
works and brain activity observed via Magnetoencephalog-
raphy (MEG) when subjects read a story. Their work just
focused on the alignment between the word-by-word vectors
produced by the neural networks and the word-by-word neu-
ral activity recorded by MEG.

Our main contributions can be summarized as follows.
First, we show that it might be possible to use brain data to un-
derstand, interpret, and illustrate what is being encoded in the
LSTM architecture, by drawing parallels between the model
components and the brain processes; Second, we perform an
empirical study on the gating mechanisms and demonstrate
the superior power of the gates except the forget gates.

2 Long Short-Term Memory Neural Network
A recurrent neural network (RNN) [Elman, 1990] is able to
process a sequence of arbitrary length by recursively applying
a transition function to its internal hidden state vector ht of
the input sequence. The activation of the hidden state ht at
time-step t is computed as a function f of the current input
symbol xt and the previous hidden state ht−1

ht =

{
0 t = 0

f(ht−1, xt) otherwise
(1)

In a classic recurrent neural network, the gradient may
blow up or decay exponentially over the time. Therefore,
LSTM was proposed in [Hochreiter and Schmidhuber, 1997]
as a solution to the vanishing gradient problem. The basic unit
of LSTM consists of three gates and a memory cell, which is
designed in analogy to the psychological foundation of the
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Figure 1: The paradigm of brain-LSTM mapping experiment.

human memory. A number of minor modifications to the
standard LSTM unit have been made. While there are nu-
merous LSTM variants, here we describe the implementation
used by [Graves, 2013].

LSTM unit has a memory cell and three gates: input gate,
output gate and forget gate. Intuitively, at time step t, the
input gate it controls how much each unit is updated, the out-
put gate ot controls the exposure of the internal memory state,
and the forget gate ft controls the amount of which each unit
of the memory cell is erased. The memory cell ct keeps the
useful history information which will be used for the next
process.

Mathematically, the states of LSTM are updated as fol-
lows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (2)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ), (3)
ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc), (4)
ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo), (5)
ht = ot � tanh(ct), (6)

where xt is the input vector at the current time step, σ de-
notes the logistic sigmoid function and � denotes element-
wise multiplication. Note that Wci, Wcf and Wco are diago-
nal matrices.

When we use LSTM to model the linguistic input, such
as sentences and documents, the first step is to represent the
symbolic data into distributed vectors, also called embed-
dings [Bengio et al., 2003; Collobert and Weston, 2008]. For-
mally, we use a lookup table to map each word as a real-
valued vector. All the unseen words are regarded by a special
symbol and further mapped to the same vector.

3 Methodology
Due to the complexity of LSTM, it is not always clear how to
assess and compare its performances as they might be useful
for one task and not the other. It is also not easy to interpret
its dense distributed representations.

In order to explore the correlation between the LSTM
architecture and human cognitive process, we employ the
paradigm of mapping the artificial representation of the lin-
guistic stimuli with the real observed neural activity, as is
explained in Figure 1. One one hand, stimulated by a se-
ries of linguistic input, the neural response can be measured
by the brain imaging techniques (e.g. EEG, fMRI, etc.). On
the other hand, given the same series of the linguistic stimuli
as the input information, an artificial model (e.g. recurrent
neural network) also generates an abstract, continuous vec-
tor representation in correspondence with the real-time brain
state. What would be attractive to us is whether there ex-
ists any linear mapping relationship between the model-based
representation and the brain activity. This would guide us to a

The time line of reading the ninth chapter of Harry Potter for about 45 minutes in total

end with him narrowly···

0.5s 0.5s 0.5s 0.5s

w(t-3) w(t-2) w(t-1) w(t)

LSTM LSTM LSTM LSTM ······

tanhtanh C h(t)w(t)

σ

f(t) c(t-1)

c(t-1)

i(t) o(t)
c(t-1)c(t-1)

σ

σ

Input Output

Forget
LSTM Unit

·
·
·

·
·
·

Pr
ed

ic
t ?

P
re

di
ct

 ?

·
·
·

BOLD Value

R
eg

io
n
 o

f b
rain

fMRI image of the 

brain at time (t)

·
·
·

Linguistic stimuli 

input for generating 

the representation of 

the reading state at 

time (t) 

narrowly 1

4
8

end with him narrowly
that always seemed to end with him narrowly

Doc-wise

100
200

400

800

16

Linguistic stimuli WindowSize

·
·
·

···

h(t-1)

w(t) h(t-1) w(t) h(t-1)

c(t)

w(t) h(t-1)

h(t-3) h(t-2) h(t-1)h(t-4)

harry had never believed ··· stories that always 
seemed to end with him narrowly

Figure 2: An explanation of the analogy and alignment be-
tween LSTM mechanism and the process of reading a story
chapter.

new direction of depicting the mechanism of model, specifi-
cally LSTM architecture in this paper. Figure 2 illustrates our
experimental design.

In this section, we first briefly introduce the brain imaging
data, and then we describe our experiment design.

3.1 Brain Imaging Data
The brain imaging data is originally acquired in [Wehbe et al.,
2014a], which recorded the brain activities of 8 subjects when
they read the ninth chapter from the famous novel, Harry
Porter and the Philosopher’s Stone [Rowling, 1997]. The
chapter had been segmented to words so that they can be pre-
sented to the subject at the center of the screen one by one,
staying for 0.5 seconds each. Since the chapter is quite long
and complicated, the whole chapter was divided into four sec-
tions. Subjects had short breaks between the presentation of
the different sections. Each section started with a fixation pe-
riod of about 20 seconds, during which the subjects stared at
a cross in the middle of the screen. The total length of the
four sections was about 45 minutes. About 5180 words were
presented to each subject in the story reading task.

The brain activity data is collected by the functional Mag-
netic Resonance Imaging (fMRI), a popular brain imaging
technique used in the cognitive neuroscience research. As
fMRI displays poor temporal resolution, the brain activity is
acquired every 2 seconds, namely every 4 words. Details of
the data acquisition can be referred to [Wehbe et al., 2014a].
Of course, there are two potential limitations with fMRI.
One is the low temporal resolution, compared with EEG. The
other is that fMRI BOLD (Blood Oxygenation Level Depen-



dent) signal is an indirect measurement of the neural activ-
ities. However, its high spatial resolution and non-invasive
characteristic have made it a successful tool in cognitive neu-
roscience, especially for human subjects. Thus, we think that
it is appropriate to measure the neural dynamics with fMRI,
since it has been widely accepted by the academic commu-
nity.

In Figure 2, we summarize the basic information about the
experiment setting of the story reading task. Taking one time
step t of the whole story time line as an example, the previ-
ous 4 words ‘end’ (w(t−3)), ‘with’ (w(t−2)), ‘him’ (w(t−1)),
‘narrowly’ (w(t)) appeared on the screen one by one. The
BOLD signal was recorded by the brain imaging machine af-
ter the presentation of these 4 words. Similar arrangements
are carried over the other part of the reading process.

We preprocess the fMRI data before training the model to
remove noise from the raw data as much as possible. We
compute the default brain activity ȳ by selecting the fMRI
recording of the default state and averaging these fMRI data.
Then we subtract other observed brain activity with the de-
fault brain activity ȳ. The new fMRI data of each time step
are used in the experiments.

3.2 Alignment
LSTM has two key hidden vector representations to keep the
history information and be used in the next time step: (1) a
memory vector ct that summarizes the history of the previous
words; and (2) the hidden state vector ht that is used to predict
the probability of the incoming word.

Under the paradigm of the brain-LSTM mapping experi-
ment, the brain activity at the t-th time step of the story read-
ing process can be viewed as a vector y(t) in the continu-
ous high-dimensional space. Each dimension of y(t) reflects
the measured value of the BOLD signal of a certain tiny area
(about 3×3×3mm3) in the brain, which is also called voxel
(VOlumeric piXEL). Mathematically, at the t-th time step, we
use vector a(t) to represent the activations of internal neurons
in LSTM. In this paper, a(t) may be memory vector ct and
hidden state vector ht.

To align the activation a(t) of LSTM and brain activity y(t)
at the same time step t, we define a function to predict the
brain activity ŷ(t) from a(t).

In this paper, we use linear function

ŷ(t) = Ma(t), (7)

where M is the mapping matrix between a(t) and y(t), which
is learnt by the least square error.

M∗ = arg min
M

T∑
t=1

‖ŷ(t) − y(t)‖
2
. (8)

The matrix M∗ is analytically solved as:

M∗ = (ATA)−1ATY, (9)

where A = [a(1), · · · , a(T )] and Y = [y(1), · · · , y(T )].
Here, we do not train a LSTM neural network to directly

predict the brain activities. The reasons lie in two points.
First, the dimension of the fMRI signal varies among dif-

ferent subjects. Therefore, it is not convenient to design a

doc-wise4004

0.4

0.6

0.8

1

Random (horizontal)

Test window size

Si
m

ila
ri

ty

S1 S2 S3 S4 S5 S6 S7 S8

Figure 3: The performance of mapping LSTM memory
cell vector to the brain imaging data over different subjects.
LSTM model is trained on 8-word window size training data.

universal neural network architecture for generating outputs
of different dimensions.

Second, the goal of this research is not to improve the per-
formance of predicting fMRI signal with LSTM neural net-
work. We just wish to explore the characteristic of the artifi-
cial memory vector and the hidden state in the LSTM archi-
tecture, as the work on correlating the performance-optimized
deep neural network models with the neural activities in the
visual cortex [Yamins et al., 2014]. Therefore, we try to avoid
any possible supervision from the fMRI data when training
LSTM language model.

3.3 Evaluation Metric
Regarding the evaluation metric, we evaluate the model by
computing the average cosine distance between the predicted
functional brain image and the true observed brain activity
at a certain time step of the story reading process. For each
activations a(t) of LSTM at the time step t in the test cases,
we compute the predicted brain activity ˆy(t). Then we cal-
culate the cosine distance between ˆy(t) and y(t). Since the
cosine distance lies between -1 and 1, we normalise the co-
sine distance into [0,1] and use it as the accuracy of each test
case. We train the linear map model over about 95% of the
brain imaging data and test the model over the remaining 5%.
We apply 20-folds cross-validation in order to get the average
performance of the model.

4 Experiment
In our experiments, the dimensionality of word embeddings
is set to 50, the hidden state size is also set to 50, and the
initial learning rate is set to 0.1. The other parameters are
initialized by randomly sampling from uniform distribution
in [-0.1, 0.1], based on the experience with recurrent neural
network.

LSTM is trained according to the procedure of the neural
language model [Mikolov et al., 2010], which predicts the in-
coming word given the history context. Since only one chap-
ter of Harry Porter and the Philosopher’s Stone is involved in
the original story reading experiment, the remaining chapters
of the book is used as the training data.

Our results report the averaged accuracies over 8 subject
under the same experimental conditions. To show the feasi-
bility of this averaging, we show the mean accuracy of LSTM
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Figure 4: The similarity between the real brain activities and the ones predicted by (a) the memory vector c(t) and (b) the hidden
state vector h(t) of LSTM under different model configurations. The x-axis of each sub-figure represents the window size of
the training data. The y-axis of each sub-figure represents the window size of the test data.

memory vector with three different experimental settings over
eight subjects in Figure 1. We can see that there is not much
between-subject variance. Therefore, each data point in Fig-
ure 4 is computed by averaging the accuracy of 160 test cases
(8 subjects with 20 test folds each).

4.1 Effect of the Long-Term Memory
LSTM does not explicitly differentiate short-term memory
with long-term memory, from a general view of its unit ar-
chitecture. Therefore, in order to clearly explore how LSTM
unit learns to encode the long-term and short-term informa-
tion and the interaction between the two types of working
memory, we deliberately cut the text data with different win-
dow size, both for the training corpus and the test stimuli. We
set window size as 1, 4, 8, 16 and sentence-length for training
data and 1, 4, 8, 16, 100, 200, 400, 800, document-length for
test data, as is visualized in Figure 3. When training LSTM
neural network and generating the vector representation a(t)
for every time step t, we choose the data of the different win-
dow size for LSTM neural network.

The experiment results are presented in Figure 4, which
suggests that the memory vector of LSTM neural language
model generally performs significantly better than the hid-
den state vector of the neural network in the brain mapping
task, given the same hyper-parameter configuration. Besides,
the accuracy of the predicted brain image by LSTM mem-
ory vector reach about 86% at the best performance, while
the highest accuracy of the predicted brain image by LSTM
hidden state vector only reach about 61%. This supports the
cognitive plausibility of the LSTM memory cell architecture.

Regarding the influence of the window size of the training
data and the window size of the test data on the model perfor-
mance, the accuracy increases with large test window size in
general. As far as the hidden state vector is concerned, the ac-
curacy also increases with small window size of the training
data and the large window size of the test data.

However, we are surprised to find that the memory vector
of LSTM architecture achieves the best performance when
LSTM model is trained with the text data of exactly the 8-
word window size and generate brain activity representation
with the word sequence input of the document-wise test win-
dow size, as is shown in Figure 4. The accuracy sharply de-
creases when the model generates the representation and pre-
dicts fMRI signals only from the previous 4 or 8 words with a
limited, small test window size. The accuracy of the memory
vector is very low when test window size is small, no matter
we decrease or increase the window size of the training data.
This indicates that the long-term memory plays an important
role in constructing the artificial memory.

4.2 Effect of the Internal Factor: the Gating
Mechanisms

In order to take a further look at the role of each gate in the
general LSTM architecture, we “remove” the input gates, the
forget gates and the output gates respectively by setting their
vector as a permanent all-one vector respectively. Then we
train the new models with the data of the different window
size. The results are presented in Figure 5. It is obvious that
dropping gates brings a fatal influence to the performance on
the brain image prediction task. While it may have negative
impact to drop input and output gates, the performances seem
to been even improved when dropping the forget gates.

Looking at the brief history of LSTM architecture, we
find that the original model in [Hochreiter and Schmidhuber,
1997] only has the input gate and the output gate. [Gers et
al., 2000] added a forget gate to each LSTM unit, suggesting
that it will help improve the model in dealing with continual
input stream. It might be the case that story reading, in our
experiment, is not a tough prediction task since the size of the
input stream is limited to only a part of one novel chapter. In
addition, reading should involve the processing of document-
wise information, which means setting forget gates to all-one
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Figure 5: Comparative analysis of LSTM model with/without
a certain gate. The x-axis of each sub-figure represents the
window size of the test data.

vector should not pose much negative influence to the ability
of the model.

It is worth noticing that the performance falls down sharply
when the output gates is removed. From a technical perspec-
tive, this is probably because that the output gate is close to
the hidden state, which means that the output gate receives
the back-propagating gradient earlier than the other two gates.
The error can not be correctly updated. Therefore, removing
the output gate will certainly interfere with the normal back
propagation process, leading the model training process to-
wards a wrong direction.

4.3 Comparison to Other Models
We compare LSTM model with the vanilla RNN and other
heuristic models.

Vanilla RNN hidden We train a vanilla RNN language
model and generate a series of representation of the story
with the hidden state vector. The experiment configura-
tion of the training and testing data are the same with
that of the best LSTM model.

BoW (tf-idf) For time step t , we transform the text that

the subject has read into a tf-idf (term frequency-inverse
document frequency) representation.

AveEmbedding We average the word embedding of all the
words that have been read at a certain time step t to gen-
erate a representation for the brain state. We use the pub-
lic Turian word embedding dataset [Turian et al., 2010].

Applying the same evaluation metric, we found that the
AveEmbed heuristic model performs well, achieving a simi-
larity of 0.81. LSTM memory vector is significantly better
than the heuristic method. RNN hidden vectors, however,
give out poor performance. A key reason is that RNN only
captures short-term information and therefore fails in mod-
elling reading process, which involves strong integration of
the long-term information.

Model Cosine Dist. Similarity
Random -0.128 0.436
BoW(tf-idf) 0.184 0.592
AveEmbedding 0.634 0.817
RNN hidden 0.016 0.508
LSTM hidden 0.224 0.612
LSTM memory 0.724 0.862

Table 1: Comparison of different models.

5 Discussion
We can summary the observations from the experiment re-
sults as follows.

• LSTM has the ability to encode the semantics of a story
by the memory vector, in which the stored information
can be used to predict the brain activity with 86% sim-
ilairty. Compared to the simple RNN, the overall archi-
tecture of LSTM should be more cognitively plausible.
• The gating mechanisms are effective for LSTM to filter

the valuable information except the forget gates, which
is also consistent with the adaptive gating mechanism of
working memory system [O’Reilly and Frank, 2006].
• The long-term memory can be well kept by LSTM.

When we deliberately cut the source of long-term mem-
ory (by using small context window size), the prediction
accuracy decreases greatly.

5.1 Visualization Analysis
In addition to the quantitative analysis above, we visualize
part of the brain state dynamics of subject 1 in Figure 6, in-
cluding the true signal sequence at 80 randomly-selected vox-
els and two signal sequences reconstructed by LSTM mem-
ory vector and LSTM hidden state vector. The x-axis of each
sub-figure represents the time steps of the reading process
(the fixation periods between every two runs are removed).
The colour indicates the activation level of a certain brain re-
gion at a certain time step.

We found that the brain dynamics reconstructed by the
memory vector of LSTM is more like a smoothed version of
the real brain activity. The brain dynamics reconstructed by
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the hidden state vector of LSTM are largely deviated from the
real brain activity, although LSTM hidden state reconstructs
a few features of the real brain signals.

5.2 Connection with Cognitive Neuroscience
To explore whether the predictability of the neural activity
varies among different brain regions for LSTM memory vec-
tor, we compute the correlation of the predicted and the real

brain activities by measuring the Pearson correlation coeffi-
cient for each voxel within each subject. Then we compute
the averaged correlation for a specific anatomical region de-
fined by AAL (Automated Anatomical Labeling) atlas and
visualize the correlation strength for subject 1 in Figure 7.

We notice some interesting phenomena that might reflect
the association of the LSTM memory vector with the pre-
dictability of brain regions involved in language processing
and semantic working memory.

[Gabrieli et al., 1998] indicates that prefrontal cortex is as-
sociated with semantic working memory. [Price, 2000] sum-
marizes that frontal superior gyrus is associated with the pro-
cessing of word meaning and that temporal pole area is as-
sociated with sentence reading. Our analysis also reflects a
strong correlation between the reconstructed brain activity
from LSTM memory vector and the observed brain activity
of the prefrontal cortex and temporal cortex, especially the
inferior and anterior part of the gyrus.

We also found that the reconstructed brain activity of Lin-
gual gyrus and Fusiform (Visual Word Form Area ) are highly
correlated with the real observed activities. Previous neuro-
science research [Mechelli et al., 2000; McCandliss et al.,
2003] has reported that these brain regions play an impor-
tant role in word recognition. Similar patterns have also been
found for other subjects.

6 Conclusion
In this paper, we explore LSTM architecture with the sequen-
tial brain signal of story reading. Experiment results suggest
a correlation between the LSTM memory cell and the cog-
nitive process of story reading. In the future work, we will
continue to investigate the effectiveness of different LSTM
variants by relating the representation generated by the mod-
els with neural dynamics. We would also try to design a more
reasonable artificial memory architecture for a better approx-
imation to the working memory system and language cogni-
tion. Besides, we will investigate some non-linear mapping
function between the artificial and brain memories.

Acknowledgments
We would like to thank the anonymous reviewers for their
valuable comments. This work was partially funded by Na-
tional Natural Science Foundation of China (No. 61532011,



61473092, and 61472088), the National High Technol-
ogy Research and Development Program of China (No.
2015AA015408).

References
[Bengio et al., 2003] Yoshua Bengio, Réjean Ducharme,
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