Efficient Partial-Duplicate Detection Based on Sequence
Matching

Qi Zhang, Yue Zhang, Haomin Yu, Xuanjing Huang
School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, P.R.China

{gi_zhang, 09210240052, 09210240086, xjhuang}@fudan.edu.cn

ABSTRACT

With the ever-increasing growth of the Internet, numer-
ous copies of documents become serious problem for search
engine, opinion mining and many other web applications.
Since partial-duplicates only contain a small piece of text
taken from other sources and most existing near-duplicate
detection approaches focus on document level, partial dupli-
cates can not be dealt with well. In this paper, we propose
a novel algorithm to realize the partial-duplicate detection
task. Besides the similarities between documents, our pro-
posed algorithm can simultaneously locate the duplicated
parts. The main idea is to divide the partial-duplicate de-
tection task into two subtasks: sentence level near-duplicate
detection and sequence matching. For evaluation, we com-
pare the proposed method with other approaches on both
English and Chinese web collections. Experimental results
appear to support that our proposed method is effectively
and efficiently to detect both partial-duplicates on large web
collections.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information Search and Retrieval;
H.3.7 [Digital Libraries]: Collection, Systems Issues

General Terms

Algorithms, Experimentation.

Keywords

Partial-Duplicate Detection, Sequence Matching, MapRe-
duce

1. INTRODUCTION

Because of the explosion of Internet and the fact that digi-
tal documents can be easily replicated, enormous duplicated
web pages and mirrored documents cause serious problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’10, July 19-23, 2010, Geneva, Switzerland.

Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

675

for search engine, product review, and many other Web ap-
plications. Along with the increasing requirements, near-
duplicate detection has received much attentions in recent
years [24, 25, 11, 26, 20].

Existing studies on near-duplicate detection usually focus
on the whole document level to figure out web pages that
have the same content but only differ in the framing, nav-
igation bar, advertisements, footer, and so on. Thus there
are several factors that can not be well processed by existing
methods.

Collection: Figure 1 shows a pair of Web pages' 2 which
both of contain the article “Droid is No. 2 in Android
traffic: Admob”. Besides this article, the page in Fig-
ure 1.(a) contains another nine related ones. Thus, the
similarity between the pages in Figure 1.(a) and (b) is
low in the document level.

Multiple-page: In order to facilitate user’s browsing, some
articles are divided into multiple pages. Websites may
use different strategies to split articles. Moveover, a
number of websites may display the article in one page
according to their own styles. It also leads to the sim-
ilarities between the pages are low in document level.

Threads in Forum: Millions of people contribute more than
10 gigabytes content everyday through forums, blogs
and other consumer-generated mediums [21]. How-
ever, user generated content often contains a couple of
sentences/pragraphs copied from news sites or other
users [14]. Since the duplications are usually only a
small piece of text, they can not be effectively detected
by existing methods.

Besides the factors listed above, there are a number of prob-
lems like, plagiarize sentences, non-cleaned web pages, sen-
tences/paragraphs quotation, can also be generalized to par-
tial duplicate. If a pair of documents are partial-duplicate
with each other, it means they contain a number of sentences
or paragraphs with similar content. With requirements of
applications such as plagiarism detection, information flow
tracking, opinion mining, and so on, partial-duplicate detec-
tion task is proposed and studied in this paper. Local text
reuse detection [23] can be used to partially address this
task. However, we argue that only similarities and category
types do not provide sufficient information for all applica-

"http://iphandroid.com/

http://www.chinapost.com.tw/business/company-
focus/2009/11/25/234147 /Droid-is.htm

tions and are not convenient enough for user to easily find
the duplications in dozens of lines.

iPhandroid

()
|8 UNSW ot ccoton «

AXTE L

e @hina Post

Save
100
emails to
Business
Schools

a? L
AL

(b)

Figure 1: Examples of partial-duplicate web pages

In this paper, we present an efficient algorithms for detect-
ing partial-duplicates and locating their positions. Figure 2
shows an example on partial-duplicates. As shown in the
graph, a sequence of sentences in Page A are similar with
a number of sentences in Page B. Page A and C also con-
tains duplicated text. From these pairs, we try to get the
following results:

e Page A (Sen; to Senj) «~ Page B (Seny, to Sen;).
e Page A (Sen,, to Sen,) «~ Page C (Sen, to Seng).

Since the proposed method can not only detect duplicates
but also locate their positions, the near-duplicates of the
whole document level can also be precisely detected. As the
Web collections contain hundreds of millions pages, the algo-
rithm is explored with MapReduce [8], which is a framework
for large-scale distributed computing. We implement our
method and compare it with the state-of-the-art approaches
on four web collections and one manually constructed evalu-
ation corpus. The experimental results show that it achieves
good performance, both effectiveness and efficiency are sig-
nificantly improved.

The contributions of this work are as follows: 1) We con-
vert the partial-duplicate detection task into sentence level
near-duplicate detection task and sequence matching task.
2) In order to handle hundreds of millions documents, the al-
gorithm is designed and implemented under the MapReduce
framework. 3) Shingles, I-Match, and Spotsigs are compared
and evaluated in experiments, and experimental analyses of
the signatures for sentences are provided. 4) Evaluations on
manually labeled “Oracle Set” and four large web collections
are used to measure the effectiveness and efficiency.

The remaining of the paper is organized as follows: In
section 2, we review a number of related work and the state-
of-the-art approaches in related areas. Section 3 provides
an brief introduction of MapReduce. Section 4 presents the
proposed method. Experimental results in test collections

676

Page A

Page B Page C

Figure 2: Partial-duplicate content

and analyses are shown in section 5. Section 6 concludes
this paper.

2. RELATED WORK

Near-duplicate detection has received considerable atten-
tions over the past several years. Previous studies on du-
plicate and near-duplicate detection can be roughly divided
into two research directions: document representation and
efficient detection. The first one focuses on representing doc-
uments with or without linguistic knowledge. Since collec-
tion contains hundreds of millions of documents, the second
one, efficiency, has also received lots of attentions. This sec-
tion introduces related approaches briefly.

Broder [3] defined the resemblance and containment be-
tween two documents. He used shingles to represent doc-
uments and Jaccard overlap to calculate the similarity be-
tween documents. In order to reduce the complexity of shin-
gling, Broder [4] proposed to use meta-sketches for this task.

Indyk and Motwani[15] proposed the notion of locality-
sensitive hashing and applied it to sublinear-time similarity
searching. LSH maintains a number of hash tables, which
each of is parameterized by the number of hashed dimen-
sions. Points close to each other in some metric space have
the same hash value with high probability. Gionis et al. [11]
also used LSH for approximate similarity search.

I-Match [7] hinges on the premise that removal of very
infrequent terms and very common terms results in good
document representations for the near-duplicate detection
task. They filter the input document based on collection
statistics and compute a single hash value for the remainder
text. The documents with same hash value are duplicates.

Schleimer et al. [22] proposed a local document finger-
printing algorithm, which is called winnowing. They de-
scribed and analyzed the winnowing algorithm for selecting
fingerprints from hashes of k-grams. They also presented the
complexity of any local document fingerprinting algorithm
and gave the non-trivial lower bound.

Henzinger [13] performed an evaluation of Border et al.’s

[4] shingling and Charikar’s [6] random projection near-duplicate

algorithms on 1.6B web pages. The results showed that nei-
ther of the algorithms works well for detecting near-duplicate
pairs on the same site, while both of them achieve high pre-
cision for near-duplicate pairs on different sites.

Manku et al. [19] proposed an approach for both online

and batch types near-duplicate detection. They used Charikar’s

fingerprinting technique [6] and demonstrated it’s effective-
ness. They also presented an algorithmic technique for iden-
tifying existing f-bit fingerprints that differ from a given fin-
gerprint in at most k bit-positions, for small k.

Theobald et al. [26] presented their work SpotSigs, which
combine stopword antecedents with short chains of adjacent
content terms. Through demonstrating the upper bounds of
Jaccard similarity, they also proposed several pruning condi-
tions, which could ignore all pairs of documents safely during

the matching process when SpotSig vectors exceed a certain
difference in length.

Besides the approaches focused on Web pages or docu-
ments, Muthmann et al. [20] proposed their work to iden-
tify threads with near-duplicate content and to group these
threads in the search results. They incorporated text-based
features, features based on extracted entities for products,
and structure-based features to capture the near-duplicate
threads.

Local text reuse detection proposed by Seo and Croft [23]
is also related to our method. Different from duplicate de-
tection, text reuse tries to capture the loose restatements
of the information from the previous sources [2]. They de-
fined six categories of text reuse and a general framework
for text reuse detection. Several fingerprinting techniques
for the framework were evaluated under the framework.

Lin [18] explored the problem of pairwise similarity on
large document collections and introduced three MapReduce
algorithms to solve this problem, which are based on brute
force, large-scale ad hoc retrieval, and the Cartesian product
of postings lists. Different with us, the granularity of this
work is also document level.

Kolak and Schilit [16] described an approach to mine pop-
ularly quoted passages and add links among them on a dig-
ital library. They use shingle table method to find repeated
sequences between different books. Since the storage com-
plexity of shingle methods is huge and extracting shared
shingles is timing consuming tasks, the method can not be
directly used for partial-duplicate detection task.

In order to handle hundreds of millions web collections,
we also use MapReduce framework in this work, which is
introduced by Dean and Ghemawat [8]. It is used an asso-
ciated implementation for processing and generating large
data sets. The MapReduce programming model has been
successfully used at Google for many different purposes.

3. MAPREDUCE

As number of data such as web pages, web request logs,
and so on grows rapidly, applications have to be distributed
across thousands of machines in order to finish in time.
Bulk-synchronous parallel (BSP) model [27] and some higher-
level abstractions(MPI [12]) have been supported program-
mers to write parallel programs. However, because of its
higher-level abstractions, programmers usually spend too
much time on details. MapReduce [8], which is difference
from these systems, exploits a restricted programming model
to parallelize the user program automatically. And the trans-
parent fault-tolerance and load balancing are also provided,
because of the restrictions.

The key concept behind MapReduce is inspired by the
map and reduce primitives present in many functional lan-
guages. Dean and Ghemawat [8] presented the observation
that most information processing computations share the
same two-stage structure, which contains map and reduce
operations. The map operation is applied to every logical
“record” of input to compute a set of intermediate key/value
pairs. Then the reduce operation is applied to all the values
that shared the same key, in order to combine the derived
data. Figure 3 shows the two-stage structure.

Under this framework, the computation takes a set of in-
put key/value pairs, and produces a set of output key/value
pairs. A programmer only needs to implement two opera-

677

key-value
pairs.
reduce
input key-value G
- map pairs roup output
input
Ld & reduce output
input Sort
B key-value output
input P pairs
key-value
(YD pairs

Figure 3: The basic structure of MapReduce

tions: map and reduce. The intermediate key/value pairs
will be grouped and sorted by the key automatically.

Many different implementations of MapReduce interface
are available now. Google’s MapReduce implementation is
coupled with Google File System (GFS) [10], a kind of dis-
tributed file system. Apache’s MapReduce implementation,
Hadoop®, which follows the same architecture, uses a dis-
tributed file system named Hadoop Distributed File System
(HDFS) to store data and the intermediate results. Hadoop
tries to schedule the MapReduce computation tasks to the
node where the data locates in order to reduce the overall
network I/O. Besides Hadoop, MapReduce has also been
implemented by many corporations, such as Greenplum,
GridGain, Cell Broadband Engine, and so on.

In this paper, we implement our algorithms under the
open-source implementation Hadoop 0.20. HDF'S is used to
provide the distributed storage.

4. OUR APPROACH

A partial-duplicate is a pairwise relationship. Given a pair
of documents, we need to identify and locate the duplicated
parts between them. To make questions simple, we limit
granularity to sentence level. Based on this assumption,
we propose the algorithm PDC-MR, which converts the
partial-duplicate detection task into three MapReduce jobs
(illustrated in Figure 4 and Figure 5).

1) Indexing: We use a MapReduce job to build a stan-
dard inverted index [9] for collections. Signatures used as
terms in the inverted index are extracted from each sen-
tences in map procedure. The map procedures emit the sig-
nature as the key, and a tuple consists of the document id
and sentence id. After grouping and sorting, the reduce pro-
cedures take the tuples as input and write out the inverted
index to the disk. Since signatures would highly impact the
final result, a detail description of it will be given in the
Section 4.1.

2) Sentence Duplication Detecting: Jaccard coeffi-
cient is used to measure the similarities between sentences.
If the Jaccard similarity between a sentence pair is over a
threshold, they are considered duplicates. Another MapRe-
duce job is used to detect the sentence duplicates. The map
procedures read the inverted index from disks and emit a
pair of sentences which both contain a same signature as the
key. After grouping and sorting, all signature ids belonging
to the same sentence pair are brought together. The reduce
procedures take them as inputs, and emit the sentence du-
plications. The procedure is shown in the right of Figure 4.

3http://hadoop.apache.org/

' (dys, d !
s (A1) 1

1 1
(dy5,dys,) ! 1 i !
--------- T e L gt et |t il
Vds, 6 fL disidys, ot i disidsy. FEsda) p (disidis) 1 : '
s ¢ jrpiririeipipih S T aid N map 1 (055,0,5,4) |) (disydys;)0 | 1 d H
Lds, £y L dndy Lyt ? (5,851 T reduce }—»! '
iaieisivtntll WY /- gt 2t T s Lme) \ [@sds) | | Gdao P,
I M - -z I I s, dss. I 3 I
1dys; fsfg (d;s1d,s;) H (dl 1%%) 1 H !
ds.d s,d355) 1 I
& ~{map }+} es: 657 ey | nae | ', i
T | : : |
------------------ 1 I
o — @
S, reauce o 1
o ~{mep } G 00" Dol
L fofo o
! 1
4
| Indexing } Sentence Duplication Detecting
Figure 4: Detecting sentence duplication of a toy collection of 3 documents.
d; 4.1.2 I-Match
St S S S S5 S¢S Ss Sy Sw I-Match [7] uses SHA1 hash function over concatenation of
S terms filtered by stopwords and infrequent terms. It hinges
S,) [on the assumption that removal of very infrequent terms
S5 and stop words results in good document representations
S, for the near-duplicate detection task. Although the compu-
d s tationally of I-Match is attractive, it usually unstable even
56 ° to small perturbations of content.
S [] .
’ o 4.1.3 SpotSigs
SS . . .
s SpotSigs [26] combines stopword antecedents with short
9

Figure 5: The sequence matching strategy

3) Sequence Matching: With the results of sentence
duplicate detection, matrixes representing sentence dupli-
cates for each pair of documents are generated. Figure 5
shows an example of the sentence duplicates between page
d; and page d;j. The dot plots in the figure represents dupli-
cated sentence pairs. The sequences of duplicated sentences
are partial duplications we try to extract and locate. Based
on that, the problem can be straightly converted to the se-
quence matching task, which aims to find all diagonals in the
matrix. We also use a MapReduce job to do that. The out-
puts of the job include partial duplicates among documents
and their locations. Since numerous of document pairs are
needed to be processed, Section 4.3 gives detail descriptions
about the efficient sequence matching method.

4.1 Signatures

As described in the Section 2, a number of signature ex-
traction methods have been proposed for document level
near-duplicate detections. Since the average number of words
per sentence is much fewer than document, we introduce sev-
eral signature methods in this section.

4.1.1 Shingles

Shingles is the simplest method, which is proposed by
Broder et al. [5]. It tokenizes documents into a list of words
and extracts all word sequences of adjacent words to repre-
sent the document. “n-shingles” represents the number of n
adjacent words in a shingle. As the shingles uses all chunks,
it might not be suitable for large collections because of too
many signatures.

678

chains of adjacent content terms. A spotsig s; of a location
in a document consists of a chain of words that follow an
antecedent word a; at a fixed spot distance d;. Antecedent
words are predefined and typically chosen to be stop words.
Experimental results in [26] show that SpotSigs with five
common terms as antecedent achieve better result than a
full stopword list. However, we observe that signatures can
not be extracted from more than 15.2% sentences in English
collection with the five common terms. The experimental
results about selecting the number of antecedents are shown
in Section 5.3.

4.2 Sentence Duplication Detection
As shown in Figure 4, the sentence duplicate detection
algorithm, which is implemented by a MapReduce job, ex-
tracts near duplicated sentence pairs whose Jaccard similar-
ity are higher than a threshold. Sentences are represented
by a group of signatures. The upper bounds for Jaccard
similarity [26] is
_ [ANB| _ min (|A],|B])
AU B| ~ max (|4],|B])

For |A| < |B|, we can get:

J(A, B)

(1)

Al

J(A,B) < B

(2)
With the upper bound and vector representation of docu-
ments, we observe that only similar length sentence pairs
can be near duplicate. If we set the threshold to 7, sen-
tence pairs where % < 7 can be safely removed. Based
on that, the pseudo-code of this method is show in Algo-
rithm 1. The input of the procedure map is the signature
id (sig;) and associated postings list ([d1s1,d2s2, ..., where
dis;j represents document id and sentence id). Inside each
mapper, all candidate sentence pairs, which follow the upper

bound of the Jaccard similarity, are emitted to the key-value
pair ({d;s;,dksi), sigi). After grouping and sorting, all sig-
nature ids belonging to the same sentence pair are brought
together. With the list, Jaccard similarity can be easily
calculated. The procedure reduce takes the sentence pair
and corresponding list as input and emit the duplication
judgments based on the Jaccard similarity and predefined
threshold 7.

Algorithm 1 Pseudo-code of sentence duplication detection
algorithm in MapReduce

1VI.AP(5igi7 [d181, d282,])
1: for all diSj S [dlsl,dQSQ,

| do

2: for all dys; € [d1s1,d2s2,...] do
3: if d»L'Sj 7& dksl then
4: if (|disj| > |diksi| and Ef—:}ll‘ >7)
or (|disj| < |drs:| and I‘Z;:s]z‘l >7) then
5: EMIT((d;s;, drsi), sig:)
6: end if
7 end if
8: end for
9: end for

REDUCE(<d18]7 dksl>7 [Siglv 5i927

ldis; N disi]

D

1. if 2 <71 then
ldisj U disil

2: EMIT((di, dk), (s5,51))

3: end if

4.3 Sequence Matching

As described in the previous sections, the sequence match-
ing procedure aims to find all diagonals in the matrix. Al-
gorithm 2 shows the pseudo-code of the MapReduce job.
Inputs to the procedure map consists document pairs (keys,
(ds, d;)) and a corresponding list of duplicated sentence pairs
between these documents (values, [(sk, 1), (Sp, Sq),...]). For
each duplicated sentence pair, the longest diagonal whose
root is the pair is extracted and emitted. Extracted sen-
tence pairs will be eliminated. -~ is used as the threshold
for the diagonal length. The final output, which contains
document pair, respective start positions, and length, are
generated in the procedure reduce. In practical, the reducer
can also be merged into the mapper to trim the intermediate
data.

S. EXPERIMENTS

5.1 Collections

We evaluate our methods with four corpora WT10g, TREC
Blogs06*, SogouT 2.0°, and ClueWeb09-T09B. Table 1 shows
the statistics of the four collections. WT10g is used by
TREC Web tracks, which contains more than 1.6 million
documents collected from about 11,000 servers. Besides
that, BLOGS06 corpus, which is used by TREC 2006 and
TREC 2007 blog tracks, is also selected to evaluate sys-
tems. It is a big sample of the blogsphere, and contains
more than 3.2 millions documents including spam as well as

“http://ir.des.gla.ac.uk/test_collections
5_http://WWW.sogou.com/labs/dl/t.html
Shttp://boston.lti.cs.cmu.edu/Data/clueweb09,/

679

Algorithm 2 Pseudo-code of sequence matching algorithm
in MapReduce
MAP(<d7«’ dj>7 [(skv sl>7 <SP7 SQ>5 D
1: P — [(Sk, 1), (Sp, Sq)s -]
2: for all s;s; in P do
D —DIAGONALEXTRACT (s;s;)
if |D| >~ then
EMIT({d;,d;), D)
P—P-D
end if
end for

Di1AGONALEXTRACT(s;s;)
1: while s;s; in P do

2: D+~ D U S$iSj
3: 8 Siq1

4: S5 < Sj+1

5: end while

REDUCE((d;, d;), [D1, Do, ...])

1: for all D € [Dy, Ds,...] do

2: EMIT((ds, d;), Start.d;, Start.d;, D.Length))
3: end for

possibly non-blogs. SogouT 2.0 corpus is made up of 24.8M
Chinese Web pages and crawled from all domains. TREC
Category B dataset(ClueWeb09-T09B), which is a subset of
the ClueWeb09, contains 50 million English pages and has
been used in various TREC tracks.

Table 1: Statistics of the evaluation corpora

Corpus Language #Docs Size
WT10g English 1,602,006 | 11GB
Blogs06 English 3,215,171 | 88.8GB
SogouT 2.0 Chinese 24,833,521 | 372.5GB
ClueWeb09-T09B | English | 50,220,423 | 400.4GB

5.2 Implementation and Setup

All the MapReduce jobs were implemented in Java for
Hadoop framework. HDFS was used to provide the dis-
tributed storage. All experiments were evaluated on a 16
machines cluster. Each machine contains two Xeon quad
core CPUs (2.0GHz), and 32GB RAM. Software stack of
the experiments used Java 1.6 and Hadoop version 0.20. For
web page cleaning, we just removed all HTML markup tags
from the collections. Since the impact of sentence boundary
detection’s performance would not be heavy and a number
of manually written rules can achieve good result [1] with lit-
tle attractive computational consumption, we used around
50 rules to do that in our experiment.

5.3 Comparison of Signatures

In order to compare the performances of different signa-
tures, we manually select 2000 documents, which contain
57135 sentences totaly, from ClueWeb09-T09B (Oracle Eng
is used to represent the corpus in the following section for
simple). For Chinese corpus SogouT, we also constructed
a manually labeled corpus (Oracle Chn), which contains

Oracle Chn Oracle Eng

1

09
08

07

06

F1 Score
F1 Score

05

04 +2-Shingles

+-2-Shingles ||
03 -=-3-Shingles
—+4-Shingles
0.2
109 08 07 06 05 04 03 02 01 1 09 08 07 06 05 04 03 02

T T

02

03 -=--3-Shingles
—+4-Shingles |

01

Figure 6: Shingles’ performances of varying the
threshold 7 for corpora Oracle Eng and Oracle Chn

Oracle Chn Oracle Eng
R B e
09 PR 09
0.8 08
0.7 0.7
L o6 2 06
]]
S os S o0s
o 04 o 04
03 03
02 02
0.1 01
0 0
2 9 2 2 9 2 9 9 2 g9 2 9 2 2 9 2 2 g 9 9
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
S 4 & h 3T oh 8 R o& 3 S 4 A h T h bR & 4
S 6 6 6 8 6 o 8 o o S 8 8 6 S 6 o 8 o o
IDF IDF

Figure 7: I-Match’ performances of varying IDF for
corpora Oracle Eng and Oracle Chn

80516 sentences extracted from 2000 documents. Six in-
dividuals were asked to label them. The average Kappa
statistic among them is around 91.6%, which shows good
agreement.

Figure 6 shows the performances comparison of 2-Shingles,
3-Shingles, and 4-Shingles. We observe that 4-Shingles con-
sistently performs better than 2-Shingles and 3-Shingles in
both English and Chinese collections. Different with results
in document level [18, 26], threshold 7 = 0.9 achieves the
best performance in both of the collections. The reason is
that around 91% of duplicated sentences in Oracle Chn and
89% of them in Oracle Eng are exactly same with each other
in our evaluation collections. However, this kind of factor is
rare in the document level.

Figure 7 shows the performances of I-Match with different
IDF ranges. Tokens exceeding IDF range were filtered. We

use idf; = 71"‘[’(5;\;?\‘?{1)

where N is the corpus size, df; is the document frequency
of the token. Since the similarities calculated by I-Match
are either 0 or 1, the threshold 7 does not need to adjusted.
The best result is achieved by [0.1, 1.0] in both Oracle Chn
and Oracle Eng. It means that most of the tokens should
be kept and used to calculate the hash result. The main
reason is that sentences usually contain a small number of
tokens and most of the duplicated sentences are same with
each other. When tokens whose IDF is lower than 0.4 are
filtered, most of the sentences have less than 2 tokens left
in Oracle Chn. Because of that, the recall for [0.4, 1.0] is
almost perfect 100%, but the precision is only 1.4%.

The impacts of the number of antecedents for Spotsig are
shown in Figure 8. The x-axis represents the number of an-
tecedents and varies from 5 to 500 in Oracle Chn and 10 to
20K in Oracle Eng. The numbers below each point represent
the average number of signatures per sentences with corre-
sponding antecedents. It shows that the antecedents’ num-

to calculate the IDF value for token i,

680

Oracle Chn Oracle Eng
1 1
. P
I..—---—--»----....,—é'gg 0.9 34 37 38 39
38424548 g e
0.9 / 0.8 | 30
/ x
o | et v 07 1 26
o o1 28 S 06 52
S8t f & o
F 05 B~
@ T 2w
/ 04
07 § 03 |
0{9 02
06 L o1
mooooo9 09999 o g 9 % x x x x x
29R88828R88888 2 8 8 = & ¥ 5 7§ §
Antecedent # Antecedent

Figure 8: Spotsigs’ performances of varying the
number of antecedents for corpora Oracle Eng and
Oracle Chn

Oracle Chn Oracle Eng
1 1
09 E_M'&.- 00 '_\‘_‘
~is. Sala
08 ~a 08 T~

e S———.

F1 Score

+-# Antecedent = 1K .
-n-# Antecedent = 5K o,
~a # Antecedent= 10K E

+-# Antecedent = 5 "
a4 Antecedent= 60
& # Antecedent = 100 .,
- 02

0.1 0.1

1 09 08 07 06 05 04 03 02 0.1 1 09 08 07 06 05 04 03 02 01

Figure 9: Spotsigs’ performances of varying the
threshold 7 for corpora Oracle Eng and Oracle Chn

ber would highly impact the performance. We think that the
main reason is that sentences cannot be well represented by
a small number of signatures. By trading-off between effi-
ciency and effectiveness, we choose # antecedent = 60 to
achieve 95.2% F1 score in Chinese collection. For English
one, we choose # antecedent = 10K. We observe that the
number of antecedents is much different between English
and Chinese collections. However the best results are both
achieved at the similar average number of signatures per
sentence. It shows that a sentence can be well described by
around 4 signatures. Figure 9 shows the performances with
different thresholds. Comparing with shingles, spotsigs show
the similar trends. We achieve the best result with 7 = 0.9
in Oracle Chn and Oracle Eng.

In summary, 4-Shingles achieve the best result in the sen-
tence level duplicate detection. However, the performances
of 2-Shingles, 3-Shingles, Spotsigs, and I-Match are compa-
rable. The parameters used for sentence level are much dif-
ferent with document level ones. We think that it is caused
by the characters of sentence collections, such as length,
standard for labeling and so on. We also observe that al-
though all three signature extraction methods are highly
tunable, the results prove to be robust for a large variety of
parameters.

5.4 Effectiveness Evaluation

After evaluating three different methods to extract du-
plicated sentences, we now consider the impact of sequence
matching. Table 2 summaries the sequence matching re-
sults with different signatures. The configurable parameters
IDF range, similarity threshold 7, and # antecedent are se-
lected by the previous experiments and listed in the brack-
ets. We use Precision, Recall, and F}-Score as our choice
of evaluation metric to measure how accurately the dupli-

Table 2: Summary of sequence matching results
with Shingles, I-Match and Spotsigs for Oracle sets

Corpus Signature P R F1
2-Shingles(r = 0.9) 0.936 | 0.937 | 0.936
3-Shingles(+ = 0.9) 0.937 | 0.937 | 0.937
Oracle Chn | 4-Shingles(+ = 0.9) 0.942 | 0.942 | 0.942
I-Match(ipr=(0.1,1.0]) 0.935 | 0.938 | 0.937
Spotsigs(#a=60, + = 0.9) 0.938 | 0.930 | 0.934
2-Shingles(~ = 0.9) 0.987 | 0.966 | 0.977
3-Shingles(+ = 0.9) 0.987 | 0.966 | 0.977
Oracle Eng | 4-Shingles(+ = 0.9) 0.987 | 0.967 | 0.977
I-Match(ipr=(0.1,1.0]) 0.985 | 0.960 | 0.972
Spotsigs(#a=10k, - =0.9) | 0.981 | 0.965 | 0.973

cation is located. From analyzing the Oracle collections, we
observe that lengths of most duplications are bigger than
three. Hence, v, which is the threshold of diagonal length,
is set to 3 in all the experiments. We observe that the final
results are heavily related to the performances of sentence
duplicate detection. Since the performances of 2-Shingles,
3-Shingles, 4-Shingles, I-Match and Spotsigs are similar, the
final Fi-scores do not have significant difference. In order
to evaluate the impact of -, we also evaluate the perfor-
mances at v = 1. In Oracle Eng, the Fi-score of 2-Singles is
only 0.952, which is significantly 7 different from the results
shown in the Table 2. 3-Shingles, 4-Shingles, [-Match and
Spotsigs have the similar results. By trading-off efficiency
and effectiveness, we determine to use I-Match method to
extract signatures in our method.

Figure 10 summarizes our results of PDC-MR versus the
document level near-duplicate detection. For convenient
comparison among copra, the top one million documents of
each corpus are used in this experiment. For document level
near-duplicate detection, the state-of-the-art method Spot-
sig is used, whose parameters are set up based on [26]. The
y-axis represents the number of unique documents. The bot-
tom parts of each bar represent results of Spotsig. The top
parts represent the number of documents which can be de-
tected by our PDC-MR method but can not be detected by
document level Spotsig. In WT10g, Spotsig extracts around
31K documents which contain duplications in the same cor-
pus. They compose more than 1.89 million duplication pairs.
Besides those documents, through our method, another 94K
documents which contain partial-duplicates are detected. In
Blogs06, ClueWeb09-T09B, and Chinese corpus SogouT2.0,
we get similar results. It shows that partial-duplications are
common in web collections and our proposed method can
effectively detect them.

In order to evaluate the validity of the extracted partial
duplicates, we random select 200 documents from the de-
tection results of each corpus and manually classify them
into four types as listed in the Table 3. “News Collection”
and “Multiple Page” are described in the Section 1. “Partial
Quotation” represents all types of short piece of text quo-
tation. Banner, copyright notice, navigation bar, and other
non-content parts are classified into “Other”. The results
show that “Partial quotation” account for the majority of all
instances. The average length of this kind of duplications

"The paired 7-test (p<0.05) is used to measure the signifi-
cance.

681

Table 3: Partial duplicates in the web collections

News Multiple Partial

Corpus Collection Page Quotation Other
WT10g 4% 8.5% 80% 7.5%
Blogs06 2.5% 5% 79% 13.5%
SogouT 2.0 10% 18% 60% 12%
ClueWeb09-T09B 3% 7% 58% 32%
140K
120K -
100K - 70,930
80K
40K - 44,862
58,134 60,814
20K
13,657
0K
WT10g Blogs06 SogouT 2.0 ClueWeb09-TO9B

| mspotsig(Doc Level) EPDC-MR |

Figure 10: Summary of PDC-MR wvs.
level Spotsig in four web collections

document

is around 6 sentences. While the average length of docu-
ment is more than 23 sentences in SogouT 2.0 and 26 sen-
tences in WT10g. Thus those partial duplications can not
be easily detected by the existing document level detection
methods. The results show that most of extracted partial
duplications are useful and meaningful. Except ClueWeb09-
T09B, the percentages of “Other” type in other collections
are less than 15%. While, there are 32% instances belonging
to this type in ClueWeb09-T09B. We think the main reason
is that ClueWeb09-T09B is not well cleaned and contains
lots of advertisements.

5.5 Efficiency Evaluation

Figure 11 plots the running times of spotsigs based near-
duplicate detection and our proposed PDC-MR method for
different corpus size. ClueWeb09-T09B is used in this exper-
iment. All Hadoop jobs in the efficiency experiments were
configured with 60 mappers and 60 reducers. The graph
suggests that although the number of sentence is huger than
the number of documents, our proposed method is more ef-
ficient than Spotsig. We think that it makes sense since
I-match is efficient and its performance is also comparable
in sentence level.

6. CONCLUSIONS

This paper presents our work on partial-duplicate detec-
tion task. A number of factors like news collection, multiple
pages, threads in forums, plagiarize sentences, non-cleaned
web pages, and sentences/paragraphs quotation belong to
it. In order to address this problem, we propose a novel
MapReduce algorithm, which converts the task into three
MapReduce jobs. Except for the similarities between doc-
uments, the algorithm can simultaneously output the posi-
tions where the duplicated parts occur. The contributions
of the work include both empirical analysis of signatures for

16K

Pl
BKE [Spotsig(Doc Level) ’/"
2 12k} | ——PDC-MR e
s o
$ 10K | e
@ -~
g 8K e
[=
w 6K G L
i= e
£ L
S a7
& - :
.-
2K F
A
oK . . .
1 2 3 4 5
DOC (millions)

Figure 11: Running time of the PDC-MR and Spot-
sig with different corpus size

sentence and algorithm design. Experimental results in four
real-world web collections show that the proposed method
can be effectively and efficiently used to detect partial- and
near-duplicate.

7.

ACKNOWLEDGMENTS

The author wishes to thank the anonymous reviewers for
their helpful comments. This work was partially funded by
973 Program (2010CB327906), Shanghai Leading Academic
Discipline Project (B114), Doctoral Fund of Ministry of Ed-
ucation of China (200802460066), and Shanghai Science and
Technology Development Funds (08511500302).

8.
[1]

REFERENCES

J. Aberdeen, J. Burger, D. Day, L. Hirschman,

P. Robinson, and M. Vilain. Mitre: description of the
alembic system used for muc-6. In Proceedings of
MUC6, pages 141-155, Morristown, NJ, USA, 1995.
M. Bendersky and W. B. Croft. Finding text reuse on
the web. In WSDM 09, pages 262—271, New York,
NY, USA, 2009. ACM.

A. Z. Broder. On the resemblance and containment of
documents. In Proceedings of SEQUENCES 1997,
page 21, Washington, DC, USA, 1997. IEEE
Computer Society.

A. 7. Broder. Identifying and filtering near-duplicate
documents. In Proceedings of COM 2000, pages 1-10,
London, UK, 2000.

A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Comput.
Netw. ISDN Syst., 29(8-13):1157-1166, 1997.

M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of STOC 2002,
pages 380-388, New York, NY, USA, 2002. ACM.

A. Chowdhury, O. Frieder, D. Grossman, and M. C.
McCabe. Collection statistics for fast duplicate
document detection. ACM Trans. Inf. Syst.,
20(2):171-191, 2002.

J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings of
OSDI 2004, San Francisco, CA, USA, 2004.

W. B. Frakes and R. A. Baeza-Yates. Information
Retrieval: Data Structures € Algorithms.
Prentice-Hall, 1992.

682

[10]

[11]

[12]

[13]

[14]

[23]

[24]

[25]

[26]

[27]

S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. SIGOPS Oper. Syst. Rev.,
37(5):29-43, 2003.

A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB ’99,
pages 518-529, San Francisco, CA, USA, 1999.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
portable parallel programming with the message-passing
interface. MIT Press, Cambridge, MA, USA, 1994.
M. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR 06,
pages 284-291, New York, NY, USA, 2006. ACM.

S. C. Herring, L. A. Scheidt, I. Kouper, and

E. Wright. A longitudinal content analysis of weblogs:
2003-2004. Blogging, Citizenship and the Future of
Media, pages 3—20, 2006.

P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In STOC ’98, pages 604-613, New
York, NY, USA, 1998. ACM.

O. Kolak and B. N. Schilit. Generating links by
mining quotations. In Proceedings of HT 2008, pages
117-126, New York, NY, USA, 2008. ACM.

A. Kotlcz, A. Chowdhury, and J. Alspector. Improved
robustness of signature-based near-replica detection
via lexicon randomization. In Proceedings of SIGKDD
2004, pages 605-610, New York, NY, USA, 2004.
ACM.

J. Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with mapreduce. In
Proceedings of SIGIR ’09, pages 155—-162, New York,
NY, USA, 2009. ACM.

G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In WWW ’07, pages
141-150, New York, NY, USA, 2007. ACM.

K. Muthmann, W. M. Barczynski, F. Brauer, and

A. Loser. Near-duplicate detection for web-forums. In
IDEAS 09, pages 142-151, New York, NY, USA,
2009. ACM.

R. Ramakrishnan and A. Tomkins. Toward a
peopleweb. Computer, 40(8):63-72, 2007.

S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: local algorithms for document
fingerprinting. In SIGMOD 03, pages 76-85, New
York, NY, USA, 2003. ACM.

J. Seo and W. B. Croft. Local text reuse detection. In
SIGIR 08, pages 571-578, New York, NY, USA, 2008.
ACM.

N. Shivakumar and H. Garcia-Molina. Scam: A copy
detection mechanism for digital documents. In Digitial
Library, 1995.

N. Shivakumar and H. Garcia-Molina. Finding
near-replicas of documents and servers on the web. In
Proceedings of WebDB 1998, pages 204—212, London,
UK, 1999. Springer-Verlag.

M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs:
robust and efficient near duplicate detection in large
web collections. In SIGIR 08, pages 563—-570, New
York, NY, USA, 2008. ACM.

L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103-111, 1990.

