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ABSTRACT
Content reuse is extremely common in user generated medi-
ums. Reuse detection serves as be the basis for many ap-
plications. However, along with the explosion of Internet
and continuously growing uses of user generated mediums,
the task becomes more critical and difficult. In this paper,
we present a novel efficient and scalable approach to detect
content reuse. We propose a new signature generation algo-
rithm, which is based on learned hash functions for word-
s. In order to deal with tens of billions of documents, we
implement the detection approach on graphical processing
units (GPUs). The experimental comparison in this paper
involves studies of efficiency and effectiveness of the pro-
posed approach in different types of document collections,
including ClueWeb09, Tweets2011, and so on. Experimen-
tal results show that the proposed approach can achieve the
same detection rates with state-of-the-art systems while us-
es significantly less execution time than them (from 400X to
1500X speedup).

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information Search and Retrieval;
H.3.7 [Digital Libraries]: Collection, Systems Issues

Keywords
Content Reuse Detection, GPUs, Learning to Hash

1. INTRODUCTION
There is a quick expansion in the popularity of user gener-

ated content in forums, microblogging sites, blogs, and other
medius in recent years. These broadcast mediums provide
opportunities for users to exchange content. According to
the statistics, users in Twitter send 230 million tweets per
day[8]. Technorati’s State of the Blogosphere Report also
showed that there are about 126 million blogs on the Inter-
net in 2010. The development of these platforms has result-
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ed in the number of user generated content (UGC) rapidly
growing during the last few years.

While the increasing of UGC, content reuse, which is the
practice of using existing content components, occurs fre-
quently in these mediums. It contains various forms includ-
ing duplicate, near-duplicate, and partial-duplicate. Ex-
act duplicate documents can be easily identified by stan-
dard checksumming techniques. Near-duplicate web pages
contain identical core content but are different in framing,
navigation bar, advertisements, footer, or other non-content
parts. Partial-duplicate, which is a more difficult problem,
contains quoted phrases, sentences, or passages from other
documents.

Duplicate or near-duplicate detection can help search en-
gine to reduce storage costs and improve the quality of search
indexes. It may also avoid users to see redundant documents
in search results. Applications including plagiarism detec-
tion, information flow tracking, opinion mining, and so on
may benefit from the partial-duplicate detection or involve
it as the basis. Along with the increasing requirements, con-
tent reuse detection has received much attention in recent
years. Many efficient and effective algorithms have been
proposed [11, 15, 19, 23, 24, 25, 28, 33].

The challenges of content reuse detection include: 1) reuse
may happen at different levels; 2) massive documents should
be efficiently processed. Partial-duplicate detection may re-
quire different algorithms to the approaches proposed for re-
solving near-duplicate document detection. One of the main
reason for this is that only a small part of a document is tak-
en from others. Content reuse detection algorithms have to
face with enormous documents, due to the rapid growth of
the web. Thus, it is essential that content reuse detection
methods should be efficient and scalable.

In this paper, we investigate a novel approach to detect
sentence level content reuse by mapping sentence to a sig-
nature space. Signature of a sentence is created by taking
the bitwise-or of all signatures of words occurs in the sen-
tence. Rather than using traditional hash functions, which
do not consider statistics of words or characters, to assign
hash code for each word/character, we analyze the require-
ments of what the good codes should satisfy and formalize
it as a constraint optimization problem. Since the task of
finding optimal codes is NP hard, we relax the optimiza-
tion problem and introduce a efficiency method to calculate
the codes. With the signature generation method, sentences
whose reuse scores are predicted to be less than a given
threshold are eliminated. Experimental results show that
the codes generated by the proposed method outperform



state-of-the-art approaches. In order to handle millions of
documents, graphical processing units (GPUs) are used to
implement the detection algorithm.

The contributions of this work are as follows: 1) We out-
line and discuss what makes good codes of words for content
reuse detection. 2) Efficient optimization method is pro-
posed based on several relaxation. 3) We provide parallel
algorithm and its GPU implementation. 4) Evaluations on
six large web collections in both English and Chinese are
used to measure the efficiency and effectiveness.

The remaining of the paper is organized as follows: In
section 2, we review a number of related work and the state-
of-the-art approaches in related areas. Section 3 presents the
proposed method. Experimental results in test collections
and analyses are shown in section 4. Section 5 concludes
this paper.

2. RELATED WORK
Our approach relates to three research areas: content

reuse detection, learning to hash and parallel algorithm-
s based on GPUs. In this section, we discuss the related
work on these areas.

2.1 Content Reuse Detection
Content reuse detection has received much attention in

the past several years. Previous studies on content reuse
detection can be roughly divided into two research direc-
tions: representation and efficiency. The first one focuses
on representing text in different levels with or without lin-
guistic knowledge. With the growth of digital documents,
efficiency, has also received much more attentions.

Shingling, which was proposed by Broder [4], uses con-
tiguous subsequences to represent documents. It does not
rely on any linguistic knowledge. If sets of shingles extracted
from different documents are appreciably overlap, these doc-
uments are considered exceedingly similar, which are usually
measured by Jaccard similarity. In order to reduce the com-
plexity of shingling, meta-sketches was proposed to handle
the efficiency problem [5].

In order to improve the robustness of shingle-like sig-
natures, Theobald et al. introduced a method, SpotSigs.
It provides more semantic pre-selection of shingles for ex-
tracting characteristic signatures from Web documents [28].
SpotSigs combines stopword antecedents with short chains
of adjacent content terms. The aim of it is to filter natural-
language text passages out of noisy Web page components.
They also proposed several pruning conditions based on the
upper bounds of Jaccard similarity.

Chowdhury et al. proposed I-Match [7], which filters the
input document based on collection statistics and compute
a single hash value for the remainder text. If the documents
with same hash value, they are considered as duplicates. It
hinges on the premise that removal of very infrequent terms
and very common terms results good document representa-
tions for the near-duplicate detection task. Since I-Match
signatures is respect to small modifications, Ko�lcz et al. [16]
proposed the solution of several I-Match signatures, all de-
rived from randomized versions of the original lexicon.

Different from the methods focused on document level,
partial-duplicate detection was proposed by Zhang et al. [33].
They converted the task into two subtasks: sentence level
near-duplicate detection and sequence matching. Except for
the similarities between documents, the method can simul-

taneously output the positions where the duplicated parts
occur. In order to handle the efficiency problem, they im-
plement their method using three MapReduce jobs.

Local text reuse detection focus on identifying the reused
and modified sentences, facts or passages, rather than w-
hole documents. Seo and Croft [23] analyzed the task and
defined six categories of text reuse. They proposed a gen-
eral framework for text reuse detection. Several fingerprint-
ing techniques for the framework were evaluated under the
framework.

The most similar work to ours was proposed by Kim et
al. [15]. They mapped sentences into a point in a high di-
mensional space and leveraged range searches in this space.
However different with us, they simply use MD5 hash func-
tion for each word to generate signature file. In this paper,
we outline and discuss what makes a good code for content
reuse detection, and propose to use learned hash codes to
capture the relations between words/characters to reduce
the false matches.

2.2 Learning to Hash
Extensive research on similarity search have been pro-

posed in recent years. Among them hash-based methods
were received more attention due to its ability of solving sim-
ilarity search in high dimensional space. Recently, several
researches attempted to find good data-aware hash functions
through machine learning.

Hinton and Salakhutdinov proposed to train a multilayer
neural network with a small central layer to convert high-
dimensional input vectors into low-dimensional codes [13].
They used a two-layer network called a Restricted Boltz-
mann machine(RBM) [14] to do it. Experimental results
showed that it could accelerate document retrieval.

Spectral hashing [30] was defined to seek compact binary
codes in order to preserve the semantic similarity between
codewords. Weiss et al. defined the criterion for a good code
which is related to graph partitioning and used a spectral
relaxation to obtain a solution.

Norouzi and Fleet [20] introduced a method for learning
similarity-preserving hash functions, which is based on la-
tent structural SVM framework. They designed a specific
loss function taking Hamming distance and binary quanti-
zation into account.

Zhang et al. introduced Self-Taught Hashing (STH) ap-
proach to semantic hashing [32]. They divided the prob-
lem of finding small codes into two stages. Firstly, they
used unsupervised method, binarised-LapEig, to optimal l-
bit binary codes for all documents in the given corpus. The
classifiers were trained to predict the l-bit code for unseen
documents.

Almost all the current methods for similarity-preserving
hash functions attempt to map the high dimensional data,
which represents the whole document or sentence, onto bi-
nary codes. In this paper, we seek good binary codes for
words under the content reuse detection framework.

2.3 GPU-based Algorithms
Graphics programming units is designed for single instruc-

tion multiple data(SIMD) paradigm, which is different from
general purpose microprocessors. Due to its advantages
on massive parallel, high memory bandwidth, and power-
ful computing capacity, GPUs have been successfully used
in numerical algorithms.
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Figure 1: An overview of the proposed content reuse detection approach

Owens et al. [21] introduced their works on implement-
ing three applications (protein folding simulation, scalable
molecular dynamics, and calculating electrostatic potential
maps). Through these examples, they demonstrated the po-
tential of the GPU for delivering performance gains on real
problems.

The emergence of the NVIDIA CUDA programming mod-
el speed up the trend of using GPUs to accelerate algorithms.
Edelkamp et al. [9] introduced their work on accelerating s-
tate space search using GPUs. Linear algebra operators were
also implemented to build blocks for more complex numer-
ical algorithms [17]. The results of researches in sort [12],
search [6], linear algebra [10], partial differential equations
(PDEs) [3], and many other applications have demonstrated
the performance and capabilities of GPUs.

F

3. OUR APPROACH
The processing flow of the proposed content reuse detec-

tion approach is shown in Figure 1. It consists of two distinct
stages:offline and online. Given a collection of documents,
the sentence extraction step splits the documents into sen-
tences. Hash code generation step takes the training data
calculated based on the given collections or open domain
data set to generate data-aware hash codes for words or
characters. Signature generation step uses the hash table to
calculate hash code of sentences from both document corpus
and given queries. The key algorithm of the online stage is
candidate searching, which tries to filter the sentences whose
reuse scores with the given query are guaranteed not bigger
than a given threshold. The reuse sentences and their cor-
responding reuse scores are calculate in the final step.

Many similarity metrics have been proposed for content
reuse detection. Jaccard similarity has been used in various
works [4, 33]. Metzler et al. proposed to use weighted word
overlap similarity to measure reuse score [18]. There are also

a number of works to study the effect of cosine similarity [2,
31]. However, directly use these similarity metrics to detect
content reuse in large collections would be very expensive.
Because of this, in recent years, hash-based methods have
been carefully studied and have demonstrated their advan-
tageous for near similarity search in large document collec-
tions [27].

In this paper, we follow the method proposed by Kim
et al. [15], which map sentence signature into a point in
a high dimensional space. Within this method, each word
(or character in Chinese corpus) is assigned a fixed-width
bit string. The sentence signature is generated by taking
bitwise-or of all signature of words in the sentence. Figure 2
shows an example of sentence signature generation process.
h(·) represents hash function for words. In [15], two bits
were set for each word using MD5 hash function [22] for
32-bit signatures.

Suppose Si = bi1bi2bi3...bim, which consists of m-bits, rep-
resents a signature extracted from a sentence. We can map
it into a point, pi = (bi1, bi2, bi3, ..., bim), in m-dimensional
space. Then the candidate sentences can be selected based
on Euclidean distance between sentences, which can be cal-
culated as follow:

Distance(pi, pj) =

√√√√ m∑
k=1

(bik − bjk)2.

In other words, it also represents the number of bit different
between the two sentences. Given a threshold

√
d, the points

whose distances lie in the range are extracted as candidates.

3.1 Learning Hash Code
As mentioned above, signatures of sentences are generated

based on the hash codes of words. Therefore, how to select
hash codes for words has become one of the key problems in
this task. In the following parts of this section, we discuss
and describe our proposed method.



Sentence:  Apple announces iPhone 4s. 

h(Apple) 
h(announce) 
h(iPhone) 
h(4s) 

= 0100 0010 
= 1100 0010 
= 1001 0000 
= 0101 0011 

Signature of Sentence (bitwise-or) = 1101 0011 

Figure 2: Example of sentence signature

3.1.1 What good code should satisfy?
The proposed approach tries to find as many as possible

reuses under the given upper bound of false matches. In
other words, it aims to maximize the recall rate, ρrec, on the
given false positives rate ρfp. Under the same conditions,
the number of bits, m, and the number, l, of bits set to
1 in the signature effect the detection recall and precision.
In particular, m, l, and vocabulary size should follow the
equation

(
m
l

) ≥ w [15], and l is selected as the smallest
value among all candidates. Hence, in order to save the
code space, words which usually occur together should have
the same hash code.

Based on the descriptions above, we seek hash codes which
should satisfy the following properties: (1) the number of
bits set to 1 in the word hash code is low; (2) the number
of bits to code the vocabulary should be small; (3) words
which usually occur together should have same hash codes.
In this paper, we formalize the good code seeking task as a
constraint optimization problem.

Let {yi}ni=1 be the list of hash codes for n words. yi ∈
{0, 1}m represents m-bits binary vector. #(wi) represents
the number of sentences containing word wi in the given cor-
pus, #(wi, wj) indicates the number of sentences containing
both word wi and word wj . sij measures the similarity be-
tween word wi and wj , which is formulated as following:

sij =
#(wi, wj)√

#(wi)
√

#(wj)
.

sij equals to binary cosine similarity in which a dimension
receives a score of 1 when the word appears in the sentence
and 0 when it does not appear. The parameter l defines the
number of bits set to 1 in the hash code. sij can be unsuper-
vised generated based on given corpus. By incorporating all
the constraints together, we obtain the following problem:

minimize:
∑
ij

sij

(
m∑

k=1

(yik − yjk)2
)

subject to: yi ∈ {0, 1}m, 1 ≤ i ≤ n (1)
m∑

k=1

yik = l, 1 ≤ i ≤ n

The property (1) is satisfied by
∑m

k=1 yik = l, where l is
usually set to a small number (in this work, we set l = 1

16
m).

The number of bits in hash code is predefined by m to fol-
low the property (2). The property (3) is implemented as
the objective function. If two words usually occur togeth-
er in sentences and have different hash code, it would give
negative impact of the objective function.

3.1.2 Optimization

The solving of equation (1) is 0-1 integer programming
program, which is a special case of integer programming.
It is known to be NP-hard. There is no easy solution for
directly optimizing it. Since the number of bits required
by equation (1) does not follow the restrictive assumption
that the bits are uniformly distributed, the spectrum of the
similarity matrix of the data can not be directly used to
get the hash codes as spectral hashing [30]. Relaxation and
approximation methods should be used to solve the large-
scale problem.

First of all, the constraint yi ∈ {0, 1}m is replaced by 0 ≤
yi ≤ 1. By ignoring the integer constraints, the objective
function in (1) is differentiable. In other words, the problem
in (1) is relaxed as:

minimize:
∑
ij

sij

(
m∑

k=1

(yik − yjk)2
)

subject to: 0 ≤ yi ≤ 1, 1 ≤ i ≤ n (2)
m∑

k=1

yik = l, 1 ≤ i ≤ n

Since there are usually thousands of yi and m is also bigger
than 32 in practice, the number of parameters tend to be
extremely large. The number of constraints is also linear in
the size of vocabulary. Because of these, the problem in (2)
can not be directly solved within acceptable time either.

In this work, we use an interior-point nonlinear program-
ming algorithm based on a filter line search to solve the
problem [29]. Based on it, the inequality constraints are
converted to barrier functions which are combined with ob-
jective function. We combine the following barrier function
with objective function to replace the constraint 0 ≤ yi ≤
1, 1 ≤ i ≤ n:

−μ
n∑
i

m∑
k

(ln(yik) + ln(1 − yik)) (3)

,where μ is barrier parameter, which is decreased at each
optimization iteration. The problem in equation 1 can now
be formulated as a sequence of approximate maximization :

minimize:
∑
ij

sij

(
m∑

k=1

(yik − yjk)2
)

−μ

n∑
i

m∑
k

(ln(yik) + ln(1 − yik)) (4)

subject to:
m∑

k=1

yik − l = 0, 1 ≤ i ≤ n

3.2 Reuse Detection
Algorithm 1 presents the pseudo-code for the detection

part (marked as online in the figure 1) of the proposed
reuse detection method. SigCol represents a collection of
sentence signatures extracted from a document collection.
Given SigCol and a query sentence, q, the candidate search
step tries to identify a set of candidate sentences, CSet.
The candidate search step selects sentences by searching the
points whose distances between pq are less than the giv-

en threshold
√
d. After that, if the candidate sentences set

CSet is not empty, the reuse score computation step cal-
culates the reuse scores between query sentence with each



Algorithm 1 Pseudo-code of the Reuse Detection

INPUT: a query sentence, q, a distance threshold
√
d, and

signatures of document collection, SigCol
OUTPUT: a set of detected reuse sentences, Oq

Candidate Selection:

1: Generate signature Sq for the given query q,
2: for all Si ∈ SigCol do
3: if Distance(Sq, Si) <

√
d then

4: CSet = CSet
⋃

i
5: end if
6: end for
7: return CSet

Reuse Score Computing:

1: for all i ∈ CSet do
2: Simq,i = Jaccard(Sq, Si)
3: if Simq,i > θ then
4: Oq = Oq

⋃
< i, Simq,i >

5: end if
6: end for
7: return Qq

candidate based on Jaccard similarity. If the reuse score of
a sentence is greater than the pre-defined threshold, the sen-
tence and its corresponding document is added in the final
list.

From analyzing the calculation consumption of algorithm
1, we observe that the most time consuming part is spent on
step 3 of the candidate selection step. Since the number of
sentences in SigCol is usually tens of millions, Distance(Sq, Si)
takes the most computing time of the whole algorithm. For-
tunately, GPUs offered us an opportunity to accelerate the
performance of the algorithm. Modern GPUs are massively
parallel processors with extremely high memory bandwidth.
Many operations can be performed in parallel. The distance
calculation part is suitable for implementation on GPUs as
it is fairly simple and consumes a huge part of computing
resources.

The function executed GPUs in parallel is called kernel,
which is driven by threads and grouped together in blocks
and grids. In this work, we implement the step 3, 4, and 5 in
candidate selection part as a kernel function. Based on the
thread index and block index, different sentence signature
Si will be justified in different threads. Since signature file
of the whole corpus is small enough (302MB for 10 million
sentences), it can be easily loaded into the global memory
of modern GPUs entirely at once.

The implement of the candidate selection is shown in fig-
ure 3. The first step is to copy signatures extracted from
a collection into global memory. Different threads would
parallel process different parts of signatures in stream pro-
cessors. The step 2 and step 3 in the figure are iterated for
each query. Because the bottleneck of this task on GPUs is
the memory access rather than processing time, if multiple
queries were processed at the same time, the acceleration
ratio to CPU implementation would be further improved.

010101010000 
110001001010 
000110000100 
110001001101 
001010010011 

 
110100001010 
010001010101 
010101011110 

... 

Signatures 

Query 

Candidate Reuse 

(Doci,Sj) 
(Doci,Sj) …  
…  
…  

1 

2 

3 

GPU Device 
Global Memory 

Stream Processors 

Figure 3: Implementation of GPU Based Parallel Candidate
Search

4. EXPERIMENTS

4.1 Collections
We evaluate the proposed method with six corpora TIP-

STER (Volume 1-3)1, ClueWeb09-T09B2, Tweets2011 Twit-
ter 3, SogouT 2.04, Baidu Zhidao5, Sina Weibo6. Table 1
shows the statistics of the six collections. TIPSTER col-
lection contains news articles, discourse passages extracted
from Associated Press (AP), Wall Street Journal (WSJ) and
so on. It has been used for evaluations of information re-
trieval, entity extraction, and many other tasks. Tweets2011
Twitter collection is used by Trec 2011 microblog track,
which contains about 16 million tweets sampled between
January 23rd and February 8th, 2011 7. TREC Catego-
ry B dataset (ClueWeb09-T09B), which is a subset of the
ClueWeb09, contains 50 million English pages and has been
used in various TREC tracks. Since the proposed approach
is language independent, we also evaluate the proposed ap-
proach on three Chinese collections. Baidu Zhidao is one
of the most popular community Q&A site in China. We
crawled a portion of question and answer pairs of all cat-
egories from it, resulting in a local archive of about 33.5
million questions. Sina Weibo is the most popular and the
largest Twitter-like micro-blog site in China. Messages or
comments from approximate 1.78 million users are used in
this work.

4.2 Implementation and Setup
We set the signature lengths(m) to 32 in this work. Fol-

lowing the parameters used in [15], the l is set 2 for 32
bits signature. For English collections, words are used as
the basic units to assign hash codes. The basic units of
Chinese collections are characters. We re-implemented the
baseline qSign algorithm [15] using the MD5 [22] as hash
function to assign hash codes for all the words/characters.
It is labeled as“MD5” in the following tables and figures. To
verify the proposed properties that good hash code should
satisfy, we construct another hash code generation baseline,
which set the same hash code for the words which often oc-

1http://www.ldc.upenn.edu/
2http://boston.lti.cs.cmu.edu/Data/clueweb09/
3http://trec.nist.gov/data/tweets/
4http://www.sogou.com/labs/dl/t.html
5http://zhidao.baidu.com
6http://www.weibo.com
7Since the data is crawled by ourselves with the tools and
tweet lists provided by NIST, about 5.8% tweets are missed
in our collection due to the user name change or other rea-
sons.



Table 2: Detailed impact of different hash code generation methods. The reuse threshold θ is set to 0.8.

bits diff.
MD5 NER OPT

#can. P R #can. P R #can. P R

d = 0 19,087 0.239 0.896 8,881 0.514 0.896 4,704 0.965 0.891

d = 1 17,2464 0.027 0.928 64,361 0.073 0.929 7,262 0.648 0.924

d = 2 992,403 0.005 0.965 416,552 0.012 0.968 27,060 0.182 0.966

d = 3 3,955,643 0.001 0.992 1,889,988 0.002 0.994 139,808 0.036 0.988

d = 4 12,049,613 0.000 1.000 6,472,842 0.001 1.000 632,570 0.008 0.998

d = 5 29,990,264 0.000 1.000 17,857,693 0.000 1.000 2,358,244 0.002 1.000

(a) TIPSTER
The total number of ground truth reuse sentences for 2,000 queries is 5,095.

bits diff.
MD5 NER OPT

#can. P R #can. P R #can. P R

d = 0 15,686 0.611 0.394 15,205 0.631 0.394 15,773 0.623 0.403

d = 1 72,832 0.224 0.669 67,964 0.243 0.678 67,846 0.247 0.687

d = 2 310,708 0.071 0.907 258,559 0.085 0.906 242,141 0.091 0.907

d = 3 1,146,414 0.021 0.987 862,317 0.027 0.987 727,063 0.033 0.986

d = 4 3,775,472 0.006 0.998 2,654,901 0.009 0.998 2,001,083 0.012 0.998

d = 5 11,025,379 0.002 0.999 7,574,689 0.003 0.999 5,306,237 0.004 0.999

(b) SogouT 2.0
The total number of ground truth reuse sentences for 2,000 queries is 24,359.
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Figure 4: The precision-recall curves of candidate searching based on different hash code generation methods in all six corpora.
The reuse threshold θ is set to 0.8.



Table 1: Statistics of the evaluation document collections

Corpus Language #Docs Size

TIPSTER English 1,078,925 3.25GB

Tweets2011 Twitter English 15,204,939 2.13GB

ClueWeb09-T09B English 50,220,423 490.4GB

Baidu Zhidao Chinese 33,497,107 22.8GB

Sina Weibo Chinese 267,612,493 418.6GB

SogouT 2.0 Chinese 37,205,218 558.0GB

cur together. “NER” is used to represent this method. For
the proposed approach, although we have proposed several
methods to reduce the computing consumption of the opti-
mization problem, there would also be too many variables
needed to optimize. In this work, we select top 3, 000 word-
s/characters to optimize according to their frequency. The
similarity matrix is calculated based on 300,000 sentences
extracted from each collection. The hash codes of the oth-
er words are generated based on MD5. We use “OPT” to
represent this method in the following.

All the experiments were evaluated on a workstation with
a 2.13G Intel Xeon quad-core processor, 4GB memory, and
an NVIDIA Quadro 4000 graphics card with 2GB global
memory and 256 stream processors. CUDA Toolkit version
4.1 is used to implement the algorithm. For sentence bound-
ary detection, we used around 50 manually written rules to
do it.

4.3 Effectiveness Evaluation
To compare the candidate searching with different hash

code generation methods, for each corpus, we randomly se-
lected 1 million sentences as evaluation data sets. As reuse
detection queries, 2,000 sentences are randomly selected from
them. The similarities between queries and sentences in the
data set are calculated using cosine coefficient. The ground
truth reuse sentences are obtained by comparing queries
with all sentences in corresponding data set.

Table 2 illustrates the impact of candidate searching step
with different hash code generation methods. We only list
the detailed result in TIPSTER and SogouT 2.0, due to
space limitations. Figure 4 summarizes results of all six
corpora. In Table 2, d represents the d bits difference be-
tween query and reuse sentences. The reuse threshold θ
is set to 0.8. “#can.” represents the number of candidate
sentences, which are selected using different hash code gen-
eration methods. From the results, we can observe that can-
didate searching step really benefits acceleration the reuse
detection system. Instead of comparing with all sentences,
the step can help reduce more than 90% calculation without
losing any correct reuses in most cases.

From Table 2a, we can also observe that different hash
code generation methods may highly impact the performance
of candidate searching step. Although the baseline method,
which is also used by previous work qSign [15], already
achieves good results, the simple way which merge the hash
code of similar words can further give more than 50% im-
provement in all bits difference level. Comparing to the
baseline methods, hash codes generated based on the pro-
posed learning based method achieve the best results. At the

Table 3: The average number of selected candidates per
sentence at different recall level. The reuse threshold θ is
set to 0.8.

Corpus
Recall

Gol. MD5 NER OPT
Level

TIPSTER

0.89
2.5 9.5 4.4 2.4

(d=0)
1.00

2.5 6024.8 3236.4 316.3
(d=4)

Twitter

0.88
1.5 1.6 1.6 1.6

(d=0)
1.00

1.5 488.1 485.1 477.4
(d=4)

ClueWeb09

0.77
35.1 27.7 27.3 26.9

(d=0)
1.00

35.1 1253.0 1006.4 554.1
(d=4)

Baidu Zhidao

0.75
2.6 3.0 3.0 2.9

(d=0)
1.00

2.6 147.2 108.7 94.5
(d=3)

Sina Weibo

0.99
37.5 40.4 39.5 39.6

(d=0)
1.00

37.5 145.8 95.0 47.4
(d=2)

SogouT 2.0

0.90
12.2 155.4 129.3 121.1

(d=2)
1.00

12.2 1887.7 1327.5 1000.5
(d=4)

same recall level, the number of selected candidate sentences
based the hash codes generated by the proposed methods is
only 2.7% to 24.6% of the sentences selected based on MD5
hash code. This indicates that the proposed method can
dramatically improve the effectiveness of candidate search-
ing.

The precision-recall curves graph for all six collections are
shown in Figure 4. The reuse threshold θ is also set to 0.8
in all the experiments for this figure. In almost all cas-
es, the proposed approach achieves the best result among
the three hash code generation methods. These results also
demonstrate the observations described in the previous sec-
tion. Although from the view precision-recall curve graph
the precision improvement can not be easily noticed, at a
recall level of 0.999, the proposed approach can further re-
duce around 51.9% sentences in SogouT 2.0, 55.4% in Sina
Weibo and 27.7% in Baidu Zhidao over baseline method.

Table 3 shows the detailed performance of candidate search-
ing step at different recall level in all six collections. The
“Gol.” column represents the average number of ground
truth reuses per sentences. Since the recall level can on-
ly be controlled by the bits difference threshold, we list the
parameter d in the bracket in the third column. From the
table, we can observe that quotations are common in Web
collections. While news articles also contain a large number
of exact quotations. At almost all recall levels, the proposed
hash code generation method achieves the best performance.
It means that the proposed method can benefit the perfor-
mance of candidate searching step.

In the above experiments, the documents used to calcu-
late similarities between words for our approach are random
selected from each collection. Since in-domain data may not
be pre-collected in some cases, in this experiment we evalu-
ate the performance of candidate selection with hash codes



Table 4: The average number of selected candidates per
query sentence with in-domain and out-of-domain data. The
reuse threshold θ is set to 0.8. The recall level is set to 100%,
the corresponding bits difference d are in the bracket. “OP-
T IN” represents hash codes generated based on in-domain
data. “OPT OUT” represents hash codes generated based
on out-of-domain data.

Corpus MD5 OPT IN OPT OUT
TIPSTER (d=4) 6024.8 316.3 5482.1
Twitter (d=4) 488.1 477.4 492.1
ClueWeb09 (d=4) 1253.0 554.1 796.4
Baidu Zhidao (d=3) 147.2 94.5 88.1
Sina Weibo (d=2) 145.8 47.4 49.1
SogouT 2.0 (d=4) 1887.7 1005.5 1228.9
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Figure 5: The overlap percentage of top frequency word-
s/characters between corpora and “Web 1T 5-gram Corpus”
or “Chinese Web 5-gram”.

generated with similarities matrix calculated from open do-
main data sets. We use“Web 1T 5-gram Corpus8”and“Chi-
nese Web 5-gram9” as the open domain data, where 5-grams
are treated as sentences. They contain English and Chinese
word n-grams and their observed frequency counts. Table 4
shows the performance candidate selection with these cor-
pora. From the results, we can observe that in-domain data
performs better than out-of-domain’s in most cases. Out-of-
domain data works better in Chinese than in English. For
the corpus Baidu Zhidao, the performance of hash codes gen-
erated based on 5-grams is even better than in-domain data.
We think that the main reason is that the words distribu-
tions in “Chinese Web 5-gram” are similar as Baidu Zhidao,
which also contains documents from multiple domains. For
English corpora, the performances of out-of-domain are not
good as in-domains. In order to find the reason, we analysis
the overlap of top frequency words. Figure 5 shows the over-
lap percentage of top frequency words/characters between
corpora and “Web 1T 5-gram Corpus” or “Chinese Web 5-
gram”. From the statistics, we can observe the reason why
out-of-domain data perform worse in English corpora than
Chinese corpora. Distributions of words play an important

8LDC Catalog No. LDC2006T13
9LDC Catalog No. LDC2010T06

role for the quality of generated hash codes from different
domains.

4.4 Efficiency Evaluation
Due to the increasingly growing data, efficiency is another

important issue we focused on in this paper. In this subsec-
tion, we compare the running time of our approach with
state-of-the-art systems. We note that the running time of
our approach composes of two steps: candidate selection
and post-processing. Candidate selection step can be fur-
ther divided into two steps: sentence feature generation and
range searching. Because feature generation time for sen-
tences are equal in different methods and the calculation
consumption is small, we only evaluate the time of differen-
t range searching methods. To evaluate the impact of the
number of selected candidates with different hash codes, we
also evaluate the post-processing time.

Table 5 shows the running time of three different range
searching methods. Brute force, which directly calculates
all the distances between query and reference sentences, is
implemented using a single thread CPU implementation and
GPU implementation. We also adopt PM-Tree10 [26] which
is an indexing technique for efficient similarity searching.
From the results, we can observe that indexing technique can
improve searching efficiency. However, brute force method
with GPU implementation can even achieve more than 1500
times speedup. Further more, the brute force methods do
not need the index construction time. We think that the
high memory bandwidth of GPU and naturally parallel al-
gorithm are the main reason of the success of GPU imple-
mentation. Figure 6 shows the running time of GPU based
candidate searching. We can observe that the processing
time along the y axis increases as a linear function of the
size of collection.

Figure 7 shows the post processing time at different recall
level. We select two corpora “TIPSTER” and “SogouT 2.0”
to evaluate the time using different hash codes. Figure 8
shows the post processing time with different hash codes
generation methods. From these results, we can observe that
the proposed hash code generation method can benefit the
execution time of post processing. The number of selected
candidates through different hash code generation methods
impacts the execution time. Since our proposed method
can filter more negative candidates than other methods, the
running time are reduced.
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Figure 6: Total execution time of candidate selection imple-
mented with GPU for 2,000 queries.

10We use the source code provided by Tomás Skopal. We set
pivot to 20, and pageSize to 2048 in the experiments.



Table 5: Candidate selection time (seconds) for 2,000 queries using different range searching methods.
0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M 0.9M 1M

Brute force (CPU) 468 939 1406 1873 2339 2807 3279 3749 4216 4685
PM-Tree (CPU) 152 297 433 569 704 852 979 1124 1258 1401
Brute force (GPU) 0.39 0.44 0.49 0.55 0.61 0.67 0.73 0.79 0.85 0.91
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Figure 7: The post processing time with different hash codes generation methods varies with recall level. The reuse threshold
θ is set to 0.8. Each corpus contains 1 million sentences.
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Figure 8: The post processing time with different hash codes generation methods varies with corpus size. The reuse threshold
θ is set to 0.8. The number of bits difference is set to 3.

5. CONCLUSIONS
In this work, we propose a novel approach which improves

the efficiency and effectiveness of content reuse detection in
two aspects. We introduce learning to hash method for gen-
erating hash codes of words/characters. We also propose
to use GPU implementation to speedup the range searching
task, which is the most time consuming part in candidate
selection step. We evaluate the proposed approach in six
different kinds of documents collections. Experimental re-
sults show that our method can significantly improve the
efficiency of content reuse detection and would not impact
the recall any more.
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[17] J. Krüger and R. Westermann. Linear algebra
operators for gpu implementation of numerical
algorithms. In ACM SIGGRAPH 2005 Courses,
SIGGRAPH ’05, 2005.

[18] D. Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and
J. Zobel. Similarity measures for tracking information
flow. In Proceedings of the 14th ACM international

conference on Information and knowledge
management, pages 517–524, 2005.

[19] K. Muthmann, W. M. Barczyński, F. Brauer, and
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