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Messages From the Chairs 

2013 is the second year of the Brain-Mind Institute (BMI) and the International Conference on 

Brain-Mind (ICBM).   

April 2, 2013, President Barack Obama announced his Brain Initiative.  The European Union has 

announced the Human Brain Project.   China is preparing its own brain project.   Understanding 

how the brain works is one of the last frontiers of the human race.   The era where humans can 

understand how their brains work seems to have arrived, although any understanding of the nature is 

always an approximation.  When a model can predict observed data well, the model is a good 

approximation in terms of the observed data.    

The subject of brain-mind is closely related to all activities of the human race.   For this reason, BMI 

started an earlier platform that treats every human activity as a part of science, including, but not 

limited to, biology, neuroscience, psychology, computer science, elctrical engineering, mathematics, 

intelligence, life, laws, policies, societies, and politics.  The scientific community faces great 

opportunities and challenges, ranging from communication to education, to research and to outreach.   

BMI tries to serve the scientific community and public.  

After offering BMI 821 Biology for Brain-Mind Research, BMI 821 Neuroscience for Brain-Mind 

Research, and BMI 871 Computational Brain-Mind in 2012, this year BMI offered BMI 871 

Computational Brain-Mind and BMI 831 Cognitive Science for Brain-Mind Research.   We would like 

to thank Fudan University for hosting the BMI 871 classes 2012 and 1013 and Michigan State 

University for hosting the BMI 811 and BMI 821 in 2012, and BMI 831 in 2013.  BMI courses were 

offered in two forms, live classes and distance-learning classes.   BMI plans to host BMI courses and 

ICBM at more international locations in the future. 

As a multi-disciplinary communication platform for exchanging latest research ideas and results, ICBM 

is an integrated part of the BMI program. ICBM 2013 includes invited talks, talks from submitted 

papers, and talks from submitted abstracts.   From this year, ICBM talks will be video recorded and 

available publicly through the Internet.  

The brain-mind subjects are highly multidisciplinary.   The BMI Program Committee tries to be 

open-minded in review of submissions.  This open-mindedness is necessary for the broad nature of 

brain-mind education and research.    

Welcome to East Lansing!    

Jiaguo Qi, Program Co-Chair 

George Stockman, Program Co-Chair 

Yang Wang, Program Co-Chair 

Juyang Weng, General Chair 
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Invited Talks 

Neural Coding and Decoding: An Overview of the Neuroscience and 
Neurophysiology behind Intracortical Brain-Computer Interfaces. 

Beata Jarosiewicz, Brown University 

Abstract 

Conditions such as brainstem stroke, spinal cord injury, and amyotrophic lateral sclerosis (ALS) 
can disconnect the brain from the rest of the body, leaving the person awake and alert but 
unable to move. Conventional assistive devices for people with severe motor disabilities are 
inherently limited, often relying on residual motor function for their use. Brain-computer 
interfaces (BCIs) aim to provide a more powerful signal source by tapping into the rich 
information content that is still available in the person’s brain activity. A crucial component of 
BCIs is the ability to record neural activity and decode information from it. In this lecture, I 
will give an overview of the neuroscience and neurophysiology behind neural coding and 
decoding, drawing examples from well-studied brain systems such as the visual system, the 
hippocampal place cell system, and the motor system.   

Short Biography 

Dr. Jarosiewicz is an Investigator in Neuroscience at Brown University in Providence, RI. She 
received her Ph.D. in 2003 in the laboratory of William Skaggs at the University of Pittsburgh 
and the Center for the Neural Basis of Cognition, characterizing the activity of place cells in a 
novel physiological state in the rat hippocampus. She did postdoctoral research with Dr. 
Andrew Schwartz at the University of Pittsburgh, where she studied neural plasticity in 
non-human primates using brain-computer interfaces, and then with Dr. Mriganka Sur at MIT, 
where she used 2-photon calcium imaging to characterize the properties of ferret visual 
cortical neurons with known projection targets. She joined the BrainGate research team at 
Brown University in 2010, where she is applying her neuroscience expertise to help develop 
practical intracortical brain-computer interfaces for people with severe motor disabilities. 
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Resting-State fMRI and Applications 

David C. Zhu, Michigan State University 

Abstract 

Recently, resting state-fMRI (rs-fMRI) has emerged as an effective way to investigate brain 
networks. In this technique, fMRI data is acquired when an individual is asked to do nothing 
but stay awake while lying in the MRI scanner. The rs-fMRI technique emerged from the 
phenomena that approximately 95% of the brain’s metabolism occurs because of spontaneous 
neuronal activity. The blood-oxygen-level-dependent (BOLD) fMRI signal indirectly measures 
the spontaneous neural activity. Therefore, the correlation of BOLD signal time courses 
between two brain regions at rest infers the functional connectivity between them. The fMRI 
signals from random brain activity are removed from correlations over a reasonably lengthy 
fMRI time course. Recent studies have demonstrated the potential applications of rs-fMRI in 
understanding the functional connectivity in the brains of both healthy individuals and 
neurological patients. In this talk, I will describe the underlying mechanism of resting-state 
fMRI and discuss potential applications. 

Short Biography 

I have 17 years of MRI research and development experience, including 13 years after I 
completed my Ph.D. degree in biomedical engineering at University of California, Davis. I 
developed my expertise in MRI physics and engineering during my graduate research and my 
subsequent work in GE Healthcare. After spending three years at University of Chicago as a 
research faculty member, I joined the faculty at Michigan State University in 2005. With other 
faculty members, we developed the Cognitive Imaging Research Center, and I have been 
supporting its growth in a role of an MRI physicist and the lead of the support team. I currently 
serve as an MRI physicist for the Cognitive Imaging Research Center (CIRC), and the 
Departments of Radiology and Psychology at Michigan State University. I also serve on the 
faculty of MSU Neuroscience and Cognitive Science programs. I am responsible for the 
technical aspect of CIRC. I have collaborated extensively with MSU psychologists and 
neuroscientists who are interested in using MR neuroimaging methods. Two of my research 
focuses are to study the functional and structural connectivity of brains affected by 
Alzheimer’s disease and by concussion. 
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Examining the Effects of Avatar-body Schema Integration 

Rabindra (Robby) Ratan, Michigan State University 

Abstract 

There is a growing body of research about the outcomes of using virtual avatars (and other 
mediated self-representations).  For example, the Proteus Effect suggests that people behave 
in ways that conform to their avatars' characteristics, even after avatar use, e.g., using taller 
avatars leads to more social confidence (Yee & Bailenson, 2007).  But there is little research 
on how the cognitive experience of using the avatar influences such effects.  This talk will 
argue that just as humans are able to integrate complex tools into body schema (Gallivan et al., 
2013), we can also integrate avatars into body schema.  Doing so requires a high level of 
proficiency controlling the avatar, which many people attain through modern gaming 
interfaces.  I argue that such integration of the avatar into body schema fundamentally 
modifies the effects of using the avatar.  Somewhat counter-intuitively, my research suggests 
that avatar-body schema integration weakens post-use Proteus effects because it detracts 
from relevance of the avatar's identity characteristics and also augments the salience of 
disconnection from the avatar after use.  I will present supporting data from an experiment 
using psychophysiological measurements, describe a second similar experiment that is 
currently underway, and discuss possible experimental designs with functional MRI to address 
this research question. ** I should note that I am a media-technology scholar, not a 
neuroscientist nor an expert in the neural mechanisms of tool-body schema integration, so I 
welcome feedback from the neuroscience community and am open to collaboration with 
interested parties.  

Short Biography 

Rabindra ("Robby") Ratan's research focuses primarily on the psychological experience of 
media use, with an emphasis on video games and other interactive environments (e.g., the 
road) that include mediated self-representations (e.g., avatars, automobiles).  He is 
particularly interested in how different facets of mediated self-representations (e.g., gender, 
social identity) influence the psychological experience of media use, and how different facets 
of this psychological experience (e.g., avatar-body schema integration, identification) affect a 
variety of outcomes, including cognitive performance, learning, health-related behaviors (e.g., 
food choice, driving aggression), and prejudicial/prosocial attitudes.  

Methodologically, his work mostly includes experiments that utilize video game-based stimuli 
with psychophysiological and survey measures, as well as analyses of behavior-log databases 
(from games and other media) linked to surveys provided by users.  Most recently, he has 
been developing games (with game-design students from the TISM department) that include 
potential experimental manipulations relating to research questions of interest (e.g., the effect 
of avatar characteristics on learning and post-play motivations) .  He plans to use these games 
in his studies as well as to release them to the general public.  
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BrainGate: Toward the Development of Brain-Computer Interfaces for 
People with Paralysis. 

Beata Jarosiewicz, Brown University 

Abstract 

Our group, BrainGate, aims to restore independence to people with severe motor disabilities 
by developing brain-computer interfaces (BCIs) that decode movement intentions from 
spiking activity recorded from microelectrode arrays implanted in motor cortex of people with 
tetraplegia. This technology has already allowed people with tetraplegia to control a cursor on 
a computer screen, a robotic arm, and other prosthetic devices simply by imagining 
movements of their own arm. In this lecture, I will present an overview of BrainGate’s ongoing 
research efforts, and I will discuss my efforts toward bringing the system closer to clinical 
utility by automating the self-calibration of the decoder during practical BCI use.   

Short Biography 

Dr. Jarosiewicz is an Investigator in Neuroscience at Brown University in Providence, RI. She 
received her Ph.D. in 2003 in the laboratory of William Skaggs at the University of Pittsburgh 
and the Center for the Neural Basis of Cognition, characterizing the activity of place cells in a 
novel physiological state in the rat hippocampus. She did postdoctoral research with Dr. 
Andrew Schwartz at the University of Pittsburgh, where she studied neural plasticity in 
non-human primates using brain-computer interfaces, and then with Dr. Mriganka Sur at MIT, 
where she used 2-photon calcium imaging to characterize the properties of ferret visual 
cortical neurons with known projection targets. She joined the BrainGate research team at 
Brown University in 2010, where she is applying her neuroscience expertise to help develop 
practical intracortical brain-computer interfaces for people with severe motor disabilities. 
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Obama’s Brain Initiative and Resistance from the Status Quo 

Juyang Weng, Michigan State University 

Abstract 

In this talk, I will first provide an overview about the challenges that Obama’s Brain Initiative 
raised to the US government and the scientific community.  It is well recognized that 
neuroscience has been productive but is rich in data and poor in theory.  Still, it is natural but 
shortsighted for a government officer to approach only well-known experimental 
neuroscientists for advice on the Brain Initiative.   I argue that it is impractical for 
experimental neuroscientists to come up with a comprehensive computational brain theory, 
because brain activities are numerical and highly analytical, which require extensive 
knowledge in analytical disciplines such as computer science, electrical engineering and 
mathematics.   However, the status quo in those analytical disciplines still fall behind greatly, 
not only in terms of knowledge required to address the problems of the Brain Initiative, but 
also in terms of the persistent resistance toward brain subjects cause by the very human 
nature.  Currently, almost all scholars, whether on the natural intelligence side or the 
artificial intelligence side, are highly skeptical about, and resisting, any comprehensive 
computational brain theory.  The human race in its modern time is repeating the objections 
to new science like those toward Charles Darwin’s theory of evolution.   Open-minded 
communication and debates seem to be necessary to avoid taxpayer’s money being unwisely 
spent on only incremental work.  

Short Biography 

Juyang (John) Weng is a professor at the Department of Computer Science and Engineering, 
the Cognitive Science Program, and the Neuroscience Program, Michigan State University, East 
Lansing, Michigan, USA. He received his BS degree from Fudan University in 1982, his MS and 
PhD degrees from University of Illinois at Urbana-Champaign, 1985 and 1989, respectively, all 
in Computer Science. His research interests include computational biology, computational 
neuroscience, computational developmental psychology, biologically inspired systems, 
computer vision, audition, touch, behaviors, and intelligent robots.  He is the author or 
coauthor of over two hundred fifty research articles.  He is a Fellow of IEEE, an editor-in-chief 
of International Journal of Humanoid Robotics and an associate editor of the new IEEE 
Transactions on Autonomous Mental Development. He has chaired and co-chaired some 
conferences, including the NSF/DARPA funded Workshop on Development and Learning 2000 
(1st ICDL), 2nd ICDL (2002), 7th ICDL (2008),  8th ICDL (2009), and INNS NNN 2008. He was 
the Chairman of the Governing Board of the International Conferences on Development and 
Learning (ICDLs) (2005-2007, http://cogsci.ucsd.edu/~triesch/icdl/), chairman of the 
Autonomous Mental Development Technical Committee of the IEEE Computational 
Intelligence Society (2004-2005), an associate editor of IEEE Trans. on Pattern Recognition 
and Machine Intelligence, an associate editor of IEEE Trans. on Image Processing.   

http://cogsci.ucsd.edu/~triesch/icdl/
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Representation of Attentional Priority in Human Cortex 

Taosheng Liu, Michigan State University 

Abstract 

Humans can flexibly select certain aspects of the sensory information for prioritized 
processing. How such selection is achieved in the brain remains a major topic in cognitive 
neuroscience. In this talk, I will examine the neural mechanisms underlying both spatial and 
non-spatial selection. I will review evidence that space-based selection is controlled by dorsal 
frontoparietal areas that encode spatial priority in topographic maps, whereas feature- and 
object-based selection also rely on similar brain areas. These areas modulate neural activity in 
early visual areas to enhance the representation of task-relevant information. Furthermore, a 
recent study from our group found that spatial and feature-based priority forms a hierarchical 
structure in frontoparietal areas such that similar selection demands recruit similar neural 
activity patterns. These results suggest that the representation of attentional priority utilizes a 
computationally efficient organization to support flexible top-down control. 

Short Biography 

Taosheng Liu received his PhD in Cognitive Psychology from Columbia University and 
postdoctoral training at the Johns Hopkins University and New York University.  He is now an 
Assistant Professor in the Department of Psychology at Michigan State University.  Taosheng 
Liu’s research interests are in the cognitive neuroscience of visual perception and attention, 
working memory, and decision making.  His main experimental techniques include using 
psychophysics and eyetracking to measure behavior and using functional magnetic resonance 
imaging (fMRI) to measure human brain activity.  Current research in his lab focuses on the 
representation of feature- and object-based attentional priority in the brain, how attention 
affects perception, and the neural mechanism of value-based decision making.  More 
information can be found online at http://psychology.msu.edu/LiuLab. 

http://psychology.msu.edu/LiuLab


Skull-closed Autonomous Development: WWN-7 Dealing with
Scales

Xiaofeng Wu, Qian Guo, Yuekai Wang and Juyang Weng

Abstract— The Where-What Networks (WWNs) consist of
a series of embodiments of a general-purpose brain-inspired
network called Developmental Network (DN). WWNs model
the dorsal and ventral two-way streams that converge to, and
also receive information from, specific motor areas in the
frontal cortex. Both visual detection and visual recognition tasks
were trained concurrently by such a single, highly integrated
network, through autonomous development. By “autonomous
development”, we mean that not only that the internal (inside
the “skull”) self-organization is fully autonomous, but the de-
velopmental program that regulates the growth and adaptation
of computational network is also task non-specific. This paper
focused on the “skull-closed” WWN-7 in dealing with different
object scales. By “skull-closed”, we mean that the brain inside
the skull, except the brain’s sensory ends and motor ends, is
off limit throughout development to all teachers in the external
physical environment. The concurrent presence of multiple
learned concepts from many object patches is an interesting
issue for such developmental networks in dealing with objects of
multiple scales. Moreover, we will show how the motor initiated
expectations through top-down connections as temporal context
assist the perception in a continuously changing physical world,
with which the network interacts. The inputs to the network
are drawn from continuous video taken from natural settings
where, in general, everything is moving while the network is
autonomously learning.

I. INTRODUCTION

In the recent years, much effort has been spent on the field
of artificial intelligence (AI) [1]. As the field of AI is inspired
by human intelligence, more and more artificial intelligent
models proposed are inspired by the brain to different degrees
[2]. General objects recognition and attention is one of the
important issues among the field of AI. And since human
vision systems can accomplish such tasks quickly, mimicking
the human vision systems is thought as one possible approach
to address this open yet important vision problem.

In the primate vision system, two major streams have been
identified [3]. The ventral stream involving V1, V2, V4 and
the inferior temporal cortex is responsible for the cognition
of shape and color of objects. The dorsal stream involving
V1, V2, MT and the posterior parietal cortex takes charge
of spatial and motion cognition. Put simply, the ventral

Qian Guo, Yuekai Wang and Xiaofeng WU are with State Key Lab.
of ASIC & System, Fudan University, Shanghai, 200433, China and
Department of Electronic Engineering, Fudan University, Shanghai, 200433,
China, (email: {09300720079, 10210720110, xiaofengwu} @fudan.edu.cn);
Juyang Weng is with School of Computer Science, Fudan University,
Shanghai, 200433, China and Department of Computer Science and En-
gineering,Michigan State University, East lansing, Michigan, 48824, USA,
(email:weng@cse.msu.edu); This work was supported by Fund of State Key
Lab. of ASIC & System (11M-S008) and the Fundamental Research Funds
for the Central Universities to XW, Changjiang Scholar Fund of China to
JW.

stream (what) is sensitive to visual appearance and is largely
responsible of object recognition. The dorsal (where and
how) is sensitive to spatial locations and processes motion
information.

With the advances of the studies on visual cortex in phys-
iology and neuroscience, several cortex-like network models
have been proposed. One Model is HMAX, introduced by
Riesenhuber and Poggio [4], [5]. This model is a hierarchical
system that closely follows the organization of visual cortex
and builds an increasingly complex and invariant feature
representation by alternating between a template matching
and a maximum pooling operation. In the simplest form
of the model, it contains four layers, which are S1, C1,
S2, C2 from bottom to top. S1 units corresponding to the
classical simple cells in primary visual cortex (V1) [6] take
the form of Gabor functions to detect the features with
different orientations and scales, which have been shown to
provide a good model of cortical simple cell receptive fields.
C1 units corresponding to cortical complex cells which show
some tolerance to shift and size takes the maximum over a
local spatial neighbourhood of the afferent S1 units from the
previous layer with the same orientation and scale band (each
scale band contains two adjacent Gabor filter sizes). S2 units
measure the match between a stored prototype Pi and the
input image at every position and scale using radial basis
function (RBF). C2 units takes a global maximum over each
S2 type (each prototype Pi), i.e., only keep the value of the
best match and discard the rest. Thus C2 responses are shift-
and scale-invariant, which are then passed to a simple linear
classifier (e.g., SVM). In summary, HMAX is a feed-forward
network using unsupervised learning, which only models the
ventral pathway in primate vision system while the location
information is lost, to implement the feature extraction and
combination. And a classifier (e.g., SVM) is a must for the
task of object recognition, which means the feature extraction
and classification are not integrated in a single network.

Different from HMAX, WWNs introduced by Juyang
Weng and his co-workers is a biologically plausible devel-
opmental model [7], [8], [9] designed to integrate the object
recognition and attention namely, what and where informa-
tion in the ventral stream and dorsal stream respectively.
It uses both feedforward (bottom-up) and feedback (top-
down) connections. Moreover, multiple concepts (e.g., type,
location, scale) can be learned concurrently in such a single
network through autonomous development. That is to say, the
feature representation and classification are highly integrated
in a single network.

WWN has six versions. WWN-1 [10] can realize object

© BMI Press 2013 1
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Fig. 1: The structure of WWN-7. The squares in the input image represent the receptive fields perceived by the neurons in the different Y
areas. The red solid square corresponds to Y1, the green dashed square with the smallest interval corresponds to Y2, the blue and orange
one with larger interval corresponds to Y3 and Y4, respectively. Three linked neurons are firing, activated by the stimuli.

recognition in complex backgrounds performing in two dif-
ferent selective attention modes: the top-down position-based
mode finds a particular object given the location information;
the top-down object-based mode finds the location of the
object given the type. But only 5 locations were tested.
WWN-2 [11] can additionally perform in the mode of free-
viewing, realizing the visual attention and object recognition
without the type or location information and all the pixel
locations were tested. WWN-3 [12] can deal with multiple
objects in natural backgrounds using arbitrary foreground
object contours, not the square contours in WWN-1. WWN-
4 used and analyzed multiple internal areas [13]. WWN-
5 is capable of detecting and recognizing the objects with
different scale in the complex environments [14]. WWN-6
[15] has implemented truly autonomous skull-closed [16],
which means that the “brain” inside the skull is not allowed
to supervised directly by the external teacher during training
and the internal connections are capable of self-organizing
autonomously and dynamically (including on and off), mean-
ing more closer to the mechanisms in the brain.

In this paper, a new version of WWN, named WWN-7,
is proposed. Compared with the prior versions, especially
recent WWN-5 and WWN-6 [17], WWN-7 have at least three
innovations described below:
• WWN-7 is skull-closed like WWN-6, but it can deal

with multiple object scales.
• WWN-7 is capable of dealing with multiple object

scales like WWN-5, but it is truly skull-closed.
• WWN-7 has the capability of temporal processing, and

uses the temporal context to guide visual tasks.
In the remainder of the paper, Section II overviews the

architecture and operation of WWN-7. Section III presents
some important concepts and algorithms in the network.
Experimental results are reported in Section IV. Section V

gives the concluding remarks.

II. NETWORK OVERVIEW

In this section, the network structure and the overall
scheme of the network learning are described.

A. Network Structure

The network (WWN-6) is shown as Fig. 1 which consists
of three areas, X area (sensory ends/sensors), Y area (inter-
nal brain inside the skull) and Z area (motor ends/effectors).
The neurons in each area are arranged in a grid on a 2D
plane, with equal distance between any two adjacent (non-
diagonal) neurons.
X acts as the retina, which perceives the inputs and sends

signals to internal brain Y . The motor area Z serves as both
input and output. When the environment supervises Z, Z
is the input to the network. Otherwise, Z gives an output
vector to drive effectors which act on the real world. Z is
used as the hub for emergent concepts (e.g., goal, location,
scale and type), abstraction (many forms mapped to one
equivalent state), and reasoning (as goal-dependant emergent
action). In our paradigm, three categories of concepts emerge
in Z supervised by the external teacher, the location of the
foreground object in the background, the type and the scale
of this foreground object, corresponding to Location Motor
(LM), Type Motor (TM) and Scale Motor (SM).

Internal brain Y is like a limited-resource “bridge” con-
necting with other areas X and Z as its two “banks” through
2-way connections (ascending and descending). Y is inside
the closed skull, which is off limit to the teachers in the
external environments. In WWN-7, there are multiple Y
areas with different receptive fields, shown as Y1, Y2, Y3,Y4...
in Fig. 1. Thus the neurons in different Y areas can represent
the object features of multiple scales. Using a pre-screening
area for each source in each Y area, before integration,

2



I(t)

z(t-1)

x(t-1)

y(t)

y(t-1)

z(t)x(t)

z(t)

z(t)

Fig. 2: Architecture diagram of a three-layer network. I(t) is
an image from a discrete video sequence at time t. x(t), y(t)
and z(t) is the response of the area X , Y and Z at time t,
respectively. The update of each area is asynchronous, which
means that at time t, x(t) is the response corresponding to
I(t) (suppose no time delay, and in our experiment, x(t) =
I(t)), y(t) is the response with the input x(t−1) and z(t−1),
and similarly, z(t) is the response with the input y(t − 1).
Based on this analysis, z(t) is corresponding to the input
image frame I(t− 2), i.e., two-frame delay.

results in three laminar levels: the ascending level (AL)
that pre-screenings the bottom-up input, the descending level
(DL) that pre-screenings the top-down input and paired level
(PL) that combines the outputs of AL and DL. In this
model, there exist two pathways and two connections. Dorsal
pathway refers to the stream X 
 Y 
 LM, while ventral
pathway refers to X 
 Y 
 TM and SM, where 
 indicates
that each of the two directions has separate connections. That
is to say, X provides bottom-up input to AL, Z gives top-
down input to DL, and then PL combines these two inputs.

The dimension and representation of X and Z areas are
hand designed based on the sensors and effectors of the
robotic agent or biologically regulated by the genome. Y is
skull-closed inside the brain, not directly accessible by the
external world after the birth.

B. General Processing Flow of the Network

For explaining the general processing flow of the Network,
Fig. 1 is simplified into a three-layer network shown as
Fig. 2, representing X , Y and Z respectively.

Suppose that the network operates at discrete times t =
1, 2.... This series of discrete time can represent any network
update frequency. Denote the sensory input at time t to be
It, t = 1, 2, ..., which can be considered as an image from a
discrete video sequence. At time t = 1, 2, ..., for each A in
{X,Y, Z} repeat:

1) Every area A computes its area function f , described
below,

(r′, N ′) = f(b, t, N)

where r′ is the new response vector of A, b and t is
the bottom-up and top-down input respectively.

2) For every area A in {X,Y, Z}, A replaces: N ← N ′

and r ← r′. If this replacement operation is not
applied, the network will not do learning anymore.

The update of each area described above is asynchronous
[18] shown as the table, which means for each area A
in {X,Y, Z} at time t, the input is the response of the
corresponding area at time t−1. For example, the bottom-up
and top-down input to Y area at time t is the response of

Time t 0 1 2 3 4 5 6 7 8 9 10
z(t): su B B α * α β * β α * *
z(t): em - - ? α ? ? β ? ? α α
y(t): z - B B α α α β β β α α
y(t): x - α α α β β β α α α β
x(t) α α α β β β α α α β β

TABLE I: Time sequence for an example: the teacher wants
to teach a network to recognize two foreground objects α and
β. “B” represents the concept of no interested foreground
objects in the image(i.e., neither α nor β). “em”: emergent
if not supervised; “su”: supervised by the teacher. “*” means
free. “-” means not applicable.

   X
 area

 Y area (A
L) 

Fig. 3: The illustration of the receptive fields of neurons

X and Z area at time t − 1 respectively. Based on such an
analysis, the response of Z at time t is the result of the both
x(t−2) and z(t−2). This mechanism of asynchronous update
is different from the synchronous update in WWN-6, where
the time of computation of each area was not considered.

In the remaining discussion, x ∈ X is always supervised.
The z ∈ Z is supervised only when the teacher chooses.
Otherwise, z gives (predicts) effector output.

According to the above processing procedure (described in
details in section III), an artificial Developmental Program
(DP) is handcrafted by a human to short cut extremely
expensive evolution. The DP is task-nonspecific as suggested
for the brain in [19], [20] (e.g., not concept-specific or
problem-specific).

III. CONCEPTS AND ALGORITHMS

A. Inputs and Outputs of Internal Brain Y

As mentioned in section II-A, the inputs to Y consist of
two parts, one from X (bottom-up) and the other from Z
(top-down).

The neurons in AL have the local receptive fields from X
area (input image) shown as Fig. 3. Suppose the receptive
field is a × a, the neuron (i, j) in AL perceives the region
R(x, y) in the input image (i ≤ x ≤ (i + a − 1), j ≤ y ≤
(j+a−1)), where the coordinate (i, j) represents the location
of the neuron on the two-dimensional plane shown as Fig. 1
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and similarly the coordinate (x, y) denotes the location of
the pixel in the input image.

Likewise, the neurons in DL have the global receptive
fields from Z area including TM and LM. It is important
to note that in Fig. 1, each Y neuron has a limited input
field in X but a global input field in Z.

Finally, PL combines the outputs of the above two levels,
AL and DL, and output the signals to motor area Z.

B. Release of neurons

After the initialization of the network, all the Y neurons
are in the initial state. With the network learning, more
and more neurons which are allowed to be turned into the
learning state will be released gradually via this biologically
plausible mechanism. Whether a neuron is released depends
on the status of its neighbor neurons. As long as the release
proportion of the region with the neuron at the center is
over p0, this neuron will be released. In our experiments,
the region is 3× 3× d (d denotes the depth of Y area) and
p0 = 5%.

C. Pre-response of the Neurons

It is desirable that each brain area uses the same area
function f , which can develop area specific representation
and generate area specific responses. Each area A has a
weight vector v = (vb,vt). Its pre-response value is:

r(vb,b,vt, t) = v̇ · ṗ (1)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized input
vector p = (ḃ, ṫ). The inner product measures the degree of
match between these two directions of v̇ and ṗ, because
r(vb,b,vt, t) = cos(θ) where θ is the angle between
two unit vectors v̇ and ṗ. This enables a match between
two vectors of different magnitudes. The pre-response value
ranges in [−1, 1].

In other words, if regarding the synaptic weight vector
as the object feature stored in the neuron, the pre-response
measures the similarity between the input signal and the
object feature.

The firing of a neuron is determined by the response in-
tensity measured by the pre-response (shown as Equation 1).
That is to say, If a neuron becomes a winner through the top-k
competition of response intensity, this neuron will fire while
all the other neurons are set to zero. In the network training,
both motors’ firing is imposed by the external teacher. In
testing, the network operates in the free-viewing mode if
neither is imposed, and in the location-goal mode if LM’s
firing is imposed, and in the type-goal mode if TM’s is
imposed. The firing of Y (internal brain) neurons is always
autonomous, which is determined only by the competition
among them.

D. Two types of neurons

Considering that the learning rate in Hebbian learning
(introduced below) is 100% while the retention rate is 0%
when the neuron age is 1, we need to enable each neuron to

autonomously search in the input space {ṗ} but keep its age
(still at 1) until its pre-response value is sufficiently large
to indicate that current learned feature vector is meaning-
ful (instead of garbage-like). A garbage-like vector cannot
converge to a desirable target based on Hebbian learning.

Therefore, there exist two types of neurons in the Y area
(brain) according to their states, initial state neurons (ISN)
and learning state neurons (LSN). After the initialization of
the network, all the neurons are in the initial state. During the
training of the network, neurons may be transformed from
initial state into learning state, which is determined by the
pre-response of the neurons. In our network, a parameter ε1
is defined. If the pre-response is over 1 − ε1, the neuron is
transformed into learning state, otherwise, the neuron keeps
the current state.

E. Top-k Competition

Top-k competition takes place among the neurons in the
same area, imitating the lateral inhibition which effectively
suppresses the weakly matched neurons (measured by the
pre-responses). Top-k competition guarantees that different
neurons detect different features. The response r′q after top-k
competition is

r′q =

{
(rq − rk+1)/(r1 − rk+1) if 1 ≤ q ≤ k
0 otherwise (2)

where r1, rq and rk+1 denote the first, qth and (k + 1)th
neuron’s pre-response respectively after being sorted in de-
scending order. This means that only the top-k responding
neurons can fire while all the other neurons are set to zero.

In Y area, due to the two different states of neurons, top-k
competition needs to be modified. There exist two kinds of
cases:
• If the neuron is ISN and the pre-response is over 1−ε1,

it will fire and be transformed into the learning state,
otherwise keep the current state (i.e., initial state).

• If the neuron is LSN and the pre-response is over 1−ε2,
it will fire.

So the modified top-k competition is described as:

r′′q =

{
r′q if rq > ε
0 otherwise

ε =

{
1− ε1 if neuron is ISN
1− ε2 if neuron is LSN

where r′q is the response defined in Equation 2.

F. Hebbian-like Learning

The concept of neuronal age will be described before
introducing Hebbian-like learning. Neuronal age represents
the firing times of a neuron, i.e., the age of a neuron increases
by one every time it fires. Once a neuron fires, it will
implement hebbian-like learning and then update its synaptic
weights and age. There exist a close relation between the
neuronal age and the learning rate. Put simply, a neuron with
lower age has higher learning rate and lower retention rate.
Just like human, people usually lose some memory capacity
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as they get older. At the “birth” time, the age of all the
neurons is initialized to 1, indicating 100% learning rate and
0% retention rate.

Hebbian-like learning is described as:

vj(n) = w1(n)vj(n− 1) + w2(n)r
′
j(t)ṗj(t)

where r′j(t) is the response of the neuron j after top-k
competition, n is the age of the neuron (related to the firing
times of the neuron), vj(n) is the synaptic weights vector of
the neuron, ṗj(t) is the input patch perceived by the neuron,
w1 and w2 are two parameters representing retention rate
and learning rate with w1 + w2 ≡ 1. These two parameters
are defined as following:

w1(n) = 1− w2(n), w2(n) =
1 + u(n)

n

where u(n) is the amnesic function:

u(n) =

 0 if n ≤ t1
c(n− t1)/(t2 − t1) if t1 < n ≤ t2
c+ (n− t2)/r if t2 < n

where t1 = 20, t2 = 200, c = 2, r = 10000 [21].
Only the firing neurons (firing neurons are in learning state

definitely) and all the neurons in initial state will implement
Hebbian-like learning, updating the synaptic weights accord-
ing to the above formulas. The age of the neurons in learning
state and initial state is updates as

n(t+ 1) =

{
n(t) if the neuron is ISN
n(t) + 1 if the neuron is top-k LSN.

Generally, a neuron with lower age has higher learning
rate. That is to say, ISN is more capable to learn new concepts
than LSN. If the neurons are regarded as resources, ISNs are
the idle resources while LSNs are the developed resources.
So, the resources utilization (RU) in Y area can be calculates
as

RU =
NLSN

NLSN +NISN
× 100%

where RU represents the resources utilization, NLSN and
NISN are the number of LSN and ISN.

G. How each Y neuron matches its two input fields

All Y neurons compete for firing via the above top-k
mechanisms. The initial weight vector of each Y neuron is
randomly self-assigned, as discussed below. We would like
to have all Y neurons to find good vectors in the input space
{ṗ}. A neuron will fire and update only when its match
between v̇ and ṗ is among the top, which means that the
match for the bottom-up part v̇b · ḃ and the match for the
top-down part ḃt · ṫ must be both top. Such top matches must
be sufficiently often in order for the neuron to mature.

This gives an interesting but extremely important property
for attention — relatively very few Y neurons will learn
background, since a background patch does not highly cor-
related with an action in Z.

Whether a sensory feature belongs to a foreground
or background is defined by whether there is an
action that often co-occurs with it.

Fig. 5: Frames extracted from a continuous video clip and used in
the training and testing of the network

IV. EXPERIMENTS AND RESULTS

A. Sample Frames Preparation from Natural Videos

In our experiment, 10 objects shown in Fig.4 have been
learned. The raw video clips of each object to be learned were
completely taken in the real natural environments. During
video capture, the object held by the teacher’s hand was
required to move slowly so that the agent could pay attention
to it. Fig. 5 shows the example frames extracted from a
continuous video clip as an illustration which needs to be
preprocessed before fed into the network. The pre-processing
described below is automatically or semi-automatically via
hand-crafted programs.

1) Resize the image extracted from the video clip to fit
the required scales demanded in the network training
and testing.

2) Provid the correct information including the type, scale
and location of the sample in each extracted image
with natural backgrounds as the standard of test and
the supervision in Z area, just like what the teacher
does.

B. Experiment Design

In our experiment, the size of each input image is set
to 32 × 32 for X area. For sub-areas Y1, Y2, Y3 and Y4
with individual receptive fields 7× 7, 11× 11, 15× 15 and
19×19 are adopted in Y area. And totally 10 different types
of objects (i.e., TM has 10 neurons) with 11 different scales
(from 16× 16 to 26× 26, i.e., SM has 11 neurons) are used
in Z area. For each scale of objects, the possible locations
is (32− S + 1)× (32− S + 1) (S = 16, 17, ...26), i.e., LM
has 17 × 17 neurons considering that objects with different
scales can have the same location. In additional, if the depth
of each Y area is 3, the total number of Y neurons is 26×
26× 3 + 22× 22× 3 + 18× 18× 3 + 14× 14× 3 = 5040,
which can be regarded as the resources of network.

The training set consisted of even frames of 10 different
video clips, with one type of foreground object per video.
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Fig. 4: The pictures on the top visualize 10 objects to be learned in the experiment. The lower-left and the lower-right pictures show the
smallest and the largest scale of the objects, respectively (the size of the pictures carries no particular meaning).

5 6 7 8 9 10
75

80

85

90

95

100

Epochs

R
ec

og
ni

tio
n 

ra
te

 (%
)

α=0.3
α=0

Fig. 6: Recognition rate variation within 6 epochs (from epoch 5th
to 10th) under α = 0 and α = 0.3.

For each training epoch, every object with every possible
scale is learned at every possible location (pixel-specific).
So, there are 10 classes ×(17 × 17 + 16 × 16 + 15 × 15 +
14×14+13×13+12×12+11×11+10×10+9×9+8×
8+7× 7) locations = 16940 different training cases and the
network is about 1−5040/16940 = 70.2% short of resources
to memorize all these cases. The test set consisted of odd
frames of 10 video clips to guarantee the difference of both
foreground and background in the network training phase
and testing phase. Multiple epochs are applied to observe
the performance modification of the network by testing every
foreground object at every possible location after each epoch.

C. Network Performances

The pre-response of Y neurons is calculated as

r(vb,b,vt, t) = (1− α)rb(vb,b) + αrt(vt, t) (3)
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Fig. 7: Scale error variation within 6 epochs (from epoch 5th to
10th) under α = 0 and α = 0.3.

where rb is the bottom-up response and rt is the top-down
response. Parameter α is applied to adjust the coupling ratio
of top-down part to bottom-up part in order to control the
influence on Y neurons from these two parts. This bottom-up,
top-down coupling is not new. The novelty is twofold: first,
the top-down activation originates from the previous time
step (t− 1) and second, non-zero top-down parameter (α >
0) is used in the testing phase. These simple modifications
create a temporally sensitive network. In formula 3, top-down
response rt consists of three parts from TM, SM and LM
respectively. In our experiments, the percentage of energy
for each section is the same, i.e., 1/3.

The high responding Z neurons (including TM,SM and
LM) will boost the pre-response of the Y neurons correlated
with those neurons more than the other Y neurons mainly
correlated with other classes, scales and locations. This can
be regarded as top-down biases. These Y neurons’ firing
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Y1: 7×7 Y2: 11×11

Y3: 15×15 Y4: 19×19
Fig. 9: Visualization of the bottom-up weights of the neurons in the first depth of each Y area. Each small square patch visualized a
neuron’s bottom-up weights vector, whose size represents the receptive field. The black image patch indicates the corresponding neuron
is in the initial state.
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Fig. 8: Location error variation within 6 epochs (from epoch 5th
to 10th) under α = 0 and α = 0.3.

leads to a stronger chance of firing of certain Z neurons
without taking into account the actual next image (if α =
1). This top-down signal is thus generated regarded as an
expectation of the next frame’s output. The actual next image
also stimulates the corresponding neurons (feature neurons)
to fire from the bottom-up. The combined effect of these
two parts is controlled by the parameter α. When α = 1,
the network state ignores subsequent image frames entirely.
When α = 0, the network operates in a frame-independent
way (i.e., free-viewing, not influenced by top-down signal).

The performance of the network, including type recogni-
tion rate, scale error and location error, is shown as Fig 6,
7 and 8. In each figure, two performance curves, which
corresponds to two conditions, α = 0 and α = 0.3, are
drawn. As discussed above, parameter α controls the ratio
of top-down versus the bottom-up part. The higher α is,
the stronger the expectations triggered by the top-down
signal is. These three figures indicate that the motor initiated
expectations through top-down connections have improved
the network performance to a certain extent.

In order to investigate the internal representations of
WWN-7 after learning the specific objects in the natural
video frames, the bottom-up synaptic weights of the neurons
in four Y areas with different receptive fields are visualized
in Fig 9. Multiple scales of object features are detected by
the neurons in different Y areas shown as the figure.

V. CONCLUSION

In this paper, based on the prior work, a new biologically-
inspired developmental network WWN-7 has been proposed
to deal with general recognition of multiple objects with
multiple scales. From the results of experiments, WWN-7
showed its capability of learning multiple concepts (i.e., type,
scale and location) concurrently from continuous video taken
from natural environments. Besides, in WWN-7, temporal
context is used as motor initiated expectation through top-
down connections, which has improved the network perfor-
mances shown in our experiments.

In the future work, more objects with different scales and
views will be used in experiment to further verify the per-
formance of WWN-7. And an ongoing work is to study the

influence of the parameter α on the network performance and
try to implement the autonomous and dynamical adjustment
of the percentage of energy for each section (i.e., bottom-up,
TM, SM and LM).
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Abstract—Recent surveys of a stretch of terrain underneath Lake 
Huron have indicated the presence of a land bridge which would 
have existed 10,000 years ago, during the recession of ice during 
the last Ice Age, connecting Canada and the United States. This 
terrain, dubbed the Alpena-Amberley land bridge, was host to a 
full tundra environment, including migratory caribou herds. 
Analysis of the herds, their potential behavior and the likely 
areas of their movement would lead researchers to the locations 
Paleo-Indians would pick for hunting and driving the animals 

The application designed around these concepts used Microsoft’s 
.Net platform and XNA Framework in order to visually model 
this behavior and to allow the entities in the application to learn 
the behavior through successive generations. By utilizing an 
influence map to manage tactical information, and cultural 
algorithms to learn from the maps to produce path planning and 
flocking behavior, paths were discovered and areas of local 
concentration were isolated. In particular, paths emerged that 
focused on efficient migratory behavior at the expense of food 
consumption, which caused some deaths. On the other hand 
paths emerged that focused on food consumption with only 
gradual migration process. Then here were also strategies that 
emerged that blended both goals together; making effective 
progress towards the goal without excessive losses to starvation. 

Keywords-Cultural Algorithms, social fabric, virtual world 

models, path planning, influence maps, learning group movement) 

I.  INTRODUCTION  
Computer modeling of group behavior and ecological 

modeling has seen considerable development as shown with 
Walter and Bergman [1][ 2], but there remains work to be done 
to integrate the two together for qualitative results [1][2]. 
Previous research has focused on either discovering the 
ecological basis for behavior in both modeling the terrain and 

flora [3], by modeling the herbivore movements in relative 
isolation to environments [2], or by modeling the individual 
aspects of herbivore movements without analyzing group 
behavior as a whole [1]. 

We choose to construct a virtual world model of an ancient 
environment, the Alpena-Amberley land bridge [6][10]. This 
project initiated by Dr. John O'Shea, a University of Michigan 
anthropologist, was undertaken to better understand how 
prehistoric Paleo-Indians hunted and lived 10,000 years ago. At 
that time, the level of what is now modern Lake Huron was low 
enough to expose a 6 mile wide land bridge that connected 
what is today Alpena in Michigan to the Amberley area in 
Canada. The land bridge is now submerged beneath 200 feet of 
water. O’Shea speculated that it contained evidence of 
prehistoric occupation. A preliminary sonar survey of selected 
areas on the land bridge supported by an NSF High Risk 
research grant provided evidence to support this conjecture. 
The data collection activities were performed using sonar, 
autonomous underwater vehicles, and scuba divers. The 
preliminary results offered tempting insight into what could 
have existed 10,000 years ago. This resulted in the project 
being named as one of the top 100 scientific discoveries of 
2009 by Discover Magazine [35]. 

Reynolds and a group of students in the Artificial 
Intelligence Laboratory at Wayne State University began 
investigating the possibility of recreating a virtual world model 
of the region, a model that can be used by the archaeologists to 
predict where to do further surveys and investigations. Since 
the overall area was very large and surveys, both above and 
under the water, are costly, initial simulations of the region 
were small in scale involving small numbers of animals and 
hunters over a limited region, but returned promising results 
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[4][29]. Here we elect to expand upon this earlier work to 
create a large scale serious game.  

A serious game is a game designed for a purpose other than 
entertainment, but rather with a main purpose of training and 
investigating. It will utilize a detailed world in which group 
behavioral concepts are ascertained and the best and most 
likely scenarios of life in this arctic world will rise to the top. 
Since Cultural Algorithms, developed by Reynolds, are 
particularly adept at the process of modeling societies [17] 
[34], we will use them to design human and animal group 
behavior in these extended models. Cultural Algorithms are a 
branch of evolutionary computation that model the cultural 
evolution process. A Cultural Algorithm consists of a belief 
space and a population space that communicate through an 
interaction protocol whereby the belief space influences the 
population and the best individuals can in turn influence the 
belief space [37] [38]. This process is based on acceptance and 
influence functions and thus the population evolves according 
to the promotion of the best individuals’ beliefs. 

Figure 1 below displays at an abstract level the Cultural 
algorithm process. The population is initialized in the first step 
labeled, “Population” Each individual is scored against 
objective criteria and a predetermined number of elite, those 
with the best performances, are selected to update the Belief 
Space. This Belief Space is the foundation for the genetic 
makeup of the offspring for succeeding generations. The 
process is then repeated and over much iteration, the population 
converges on results, which are applicable to the problem 
space. 

Our stated goal is to simulate the emergence of likely 
caribou behavior,   positioning and survival across the Alpena-
Amberley ridge during various scenarios that are supported by 
and designed with real world flora and fauna constraints. By 
utilizing both real world terrain data acquired from Dr. O'Shea 
as well as simulated human behavior that Cultural Algorithms 
(CA) and influence maps will help develop, we hope to create 
representations of what actual events transpired on this land. 

 

 
 

 

This paper describes an influence map driven, Cultural 
Algorithm that generates path-planning for caribou migration 
routes across the Alpena-Amberley land bridge. The results 
will be displayed not only in a real-time 3D display of 
migration behavior, but also as well as a 2D output of influence 
values.      

A. Terrain Creation and Modeling 
Using underwater depth, latitude and longitude positioning 

information provided by Dr. John O’Shea [4][6][37], the geo-
positional data was used to construct a grey-scale image called 
a height-map. This height-map is the basis for all of our results. 
Using Microsoft's XNA Framework, we will generate a 3D 
model mesh [7] and with refinements, allow access to height 
and normal data throughout the simulation. 

The land bridge itself extended from Alpena, Michigan, 
USA, to Amberley, Ontario, Canada during the last ice age, 
and is pictured in figure 2 [37]. It was a strip of land that 
crossed under what is currently Lake Huron. The research has 
already provided some insight into possible hunting and 
camping sites. The process of using sonar to map the lake 
bottom has given researchers the ability to construct a 3D 
interactive and expandable environment for behavioral and 
cultural analysis using constructs that would help discover the 
possible survival processes of these societies that relied on this 
terrain. Current survey work being conducted by Dr. O'Shea 
promises to yield far higher resolution scans of the underwater 
terrain. The simulation has been developed to incorporate 
changes in configurations of terrain and vegetation coverage, as 
well as variables such as water level. The latter becomes 
important in the future when modeling the impact of rising 
water levels on land bridge utilization. 

 
 

 

B. Group Behavior 
There are a large number of available path planning 

methods for individuals and while they may be extended to 
maintain groups and formations [36]. On the other hand, if we 
abstract the population into discrete sets of individuals and then 
plan paths according to the abstract group entity instead of the 
individual inside, we can achieve both accurate, low-overhead 

Fig. 1. Design of Cultural Algorithms. 

Fig. 2. Alpena-Amberley bridge across Lake Huron 
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path planning as well as visibly fluid movement. To prevent 
both the overhead and to tightly integrate behavior to simulate 
a real work flocking behavior, we look at the behavior 
introduced by Reynolds [5].   

Shown below in Figure 3 is an example of the execution of 
our path-finding technique which is described in this paper. 
The dark squares are path-finding nodes which are determined 
by a heuristic detailed in section II – each square is an in-order 
node that the group will navigate towards. However, since the 
groups are comprised of many individuals with their own 
personal actions, they will simulate fluid behavior on the way. 
Their individual actions are determined by the parameters, such 
as desired proximity to neighbors. This behavior allows groups 
to have macro goal decision making ability while also allowing 
individuals to make choices. 

 

 
 

 

  

Entities create a dynamic flocking movement using three 
primary principles: cohesion, separation, and alignment. Using 
these three forces, a flow is established that takes into account 
the individuals in each group. Splitting apart the total 
population into groups of dynamic sizes with capacities and 
orientation centers, as well as establishing individual goal 
locations and weights for each group, allows multiple 
interactions with the environment with each run. These goals 
and weights are created and tracked through the first portion of 
our learning mechanisms, influence maps. The refinement of 
each portion is done at the end of each generational pass using 
the Cultural Algorithm, which applies the data for the next 
generations input influence maps, path-finding and weights.  

C. Learning Mechanisms 
Our process involves a two-step learning method. The first 

step is to generate influence maps, an assigned-value, cellular 
method of summarizing values in space. Influence maps in 
games and simulations have a strong history [32] and were 
found to be of great use in maintaining a statistical tracking of 
the interactive world in computer games. Influence maps are 
cellular divisions of 2D or 3D worlds with tactical values 
assigned to the spaces they occupy. This value is determined by 
a problem specific function and can be accessed during the 
application execution for both value input into the program, or 
to receive output values for later reference by learning and 
decision making algorithms. The map is a function of the game 

world, distributed across the terrain which represents the 
desirability of a particular cell, reflecting positive influences 
such as availability of food and negative influences, such as 
dangerous elevation changes. An influence map is generated by 
subdividing the world space into smaller segments or cells; 
these segments can be directly accessed by a number of 
methods that allow an entity in the world to retrieve 
informational values concerning the area they require 
information about. 

In our program, the influence maps are generated in real 
time during the run of the serious game. By using influence 
maps, we can track in aggregate valuable components of 
tactical knowledge that would influence caribou behavior: 
location of food, rough terrain, or any other positive or negative 
influence to a segment of 3D space. The influence maps are 
input into the simulation by using grey-scale bitmaps, allowing 
a starting point of tactical knowledge; the particular setup can 
be saved out at any time as well.  

The second step, and most refined, involves the use of 
Cultural Algorithms. CA has proven itself as an adaptable 
source for both real time and turn based game applications [30] 
[31] and since we use both real-time components as well as 
those which occur at the end of each belief cycle, we should 
consider whether to focus on the real-time or turn-based 
advantages of Cultural Algorithms. The Open Racing Car 
Simulator (TORCS) [31] is closest to what we are developing – 
a real-time 3D virtual simulation with reward and punishment 
concepts (win/loss), which we can extrapolate to our own 
world. The CA in TORCS had access to state variables for a 
vehicle such as gearing, track position, wheel spin, and fuel; 
the CA would take that information and optimize the output to 
interact with the vehicle. The TORCS system interface allowed 
that refined information to generate a set of output parameters 
to interact with the vehicle, such as acceleration and braking, 
that could move the car within the race pack. Likewise, 
behavior researched by Vitale [29] used a CA to evaluate a 
simple wandering kinematic in the same situation we now 
attempt to model. A key parameter in the kinematic was the 
jittering parameters that would control the direction and rate of 
change, the groups of individuals modeled became more 
successful at crossing the land bridge. The Cultural Algorithm 
in that game simulation was used to parameterize a kinematic 
wandering algorithm that is applied to all caribou agents in 
order to determine how much random movement the caribou 
undergo. Figure 4 shows a number of individuals denoted as 
triangles as they attempt to cross a land bridge in a simulation 
using the wandering kinematic. Each candidate set of 
parameters in the Cultural Algorithm population was evaluated 
in terms of its ability to effectively control group behavior. The 
performance was evaluated in terms of distance traveled and 
percentage of living entities at the end of a run, allowing the 
CA to construct well defined parameters for crossing a sample 
bridge as it improves over generations.   

  The 3D virtual world is developed with the ability to 
extend the algorithm to multiple animals and with a variety of 
inputs, simply by changing the value files the program reads. 
However, the implementation itself sets out to discover valid 
and hopefully verifiable results on caribou migration over the 
bridge based that can be used to interpret existing real world 

Fig. 3. Rigid path-finding nodes shown as dark blocks, 
individual’s movement of groups around the nodes while 

traveling shown in lighter colored areas. 
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data from underwater surveys. The reminder of this paper is 
organized as follows. Section II provides the details of the 
group learning framework as a whole and how it integrates all 
the various behaviors into one final product. It will discuss in 
detail how the Influence Map driven Cultural Algorithm  
framework will attempt to produce through tandem behavior an 
optimal result for our expectations; that is, a predicted and 
reasonable path over the land bridge. Section III reviews the 
performance of the framework relative to our goals. It will 
present and dissect the final product and determine the 
applicability to real world situations and applications. It will 
also discuss the ease and flexibility of future extensions to the 
framework and its components. Section IV summarizes our 
findings and presents directions for future work. 

             

II. IMPLEMENTATION 
Development for the application was executed in 

Microsoft's C# language on top of the .Net platform. The 
supporting structure of the graphical components was built 
around Microsoft's XNA 3.1 Framework, a .Net series of 
classes allowing for rapid development of graphical software 
for display and interaction on multiple .Net compatible 
machines. The graphics are rendered on the GPU and all game 
logic and AI procedures are executed on the CPU. The 
application was designed with both scalability and extensibility 
in mind. 

A. Terrain and Entity Display and Interaction 
The terrain display process begins with converting a 2D 

grey-scale height-map into 3D mesh model for display on the 
GPU through the XNA Framework as shown in Figure 5. A 
custom content processor is used instead of the normal content 
processing in XNA.  

 

              

 
 

 

 

 

 

 
 

 

There are two important variables that must be specified in 
order to coerce the pixels to a vector in 3-dimensional space: 
height and spacing. The height dictates the maximum range in 
display units between black and white input pixels; the spacing 
dictates the XZ (horizontal) spacing between adjacent pixels in 
the input file.  

With that information, each pixel is converted to a point in 
3D space originating at [0, 0, 0] and growing in positive 
directions – each point becomes a vertex in a final 3D mesh for 
display. Textures are mapped to this model mesh based on 
local vertex heights and the normals of the faces from 3 
adjacent vertices. The terrain during game time has a useful 
class called HeightMapInfo which allows the height and 
normal of the terrain at any point in space of the simulation to 
be read and ingested into the game logic.  

Vegetation is read from 2 grey-scale maps: one generated 
for trees and one for scrub brush. The vegetation is displayed in 
a manner called “bill-boarding”, where a 2D image is rendered 
in 3D space and in this case, always faces the camera. All 
visible vegetation features – such as trees and scrub – are 
drawn using bill-boarding techniques as described by Pettit 
[33]. In bill-boarding, a 2D image is rendered as a 3D point 
with surface area. In this scenario, the images always rotate in 
the XZ axes while maintaining the Y up vector, to simulate 
forests and loads of bushes. The input image locations are 
scaled in the same XZ manner as the terrain and the height for 
the bill-boarded images is determined by the terrain height 
selected with their XZ location. Multiple billboards can be 
placed in close proximity if the intensity on the 2D input image 
is higher – this random clustering creates a realistic looking 
environment. The vegetation is constructed as a single mesh for 
more efficient drawing. There are also two 3D meshes behind 
the scenes which duplicate the display of the terrain, which is 
used for determining the maximum density of vegetation at any 
3D point, in the same way height is read from the terrain. 

The water is displayed using a highly realistic method 
generated from [7] and incorporates reflections, refractions and 
other high-fidelity options to give a tactile feel to the game 
world.    

All game entities are displayed on the GPU using built in 
classes provided by XNA, which allowed for rapid 
development. The entities also inherit from the XNA class 
called DrawableGameComponent, which is a class which has 
overrideable functions for updating and drawing them, 
allowing time elapsed during each step of the execution to be 
referenced for smooth movement. During each time step, 
before being drawn, an entity goes through an update phase. 

Fig. 4. Improved caribou movement over the land bridge 

Fig. 5. Microsoft’s XNA Content Pipeline 
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During this period and on the entity level, items such as caloric 
count and living status are updated. This information is used by 
other processes, especially flocking and CA components.  

B. Influence Map 
 The single class InfluenceMap supports all of the 

behavior for creating and updating the influence map across the 
game. When created, a map has the specified number of cells 
and the cells have system-determined dimensions so that all 
cell's dimensions are equal and the XYZ sizes are proportionate 
to the terrain dimensions and the number of cells specified. The 
map can be instantiated in one of two different ways: 

Providing the terrain dimensions and the number of cells 
desired in XYZ directions. The map is constructed by taking 
the terrain dimensions and dividing that by the number of cells 
for height, width and length. The cells all have an initial value 
of 0. A 2D grey-scale image is provided. The size of the image 
in pixels determines the number of cells in the X and Z 
directions and a single Y level is assigned. The values for the 
cells are determined by the grey-scale values of the pixels, 
from 0 – 255.  

The class supports a number of functions, such as updating 
a cell's value by index or by position, as well as finding the 
lowest or highest value cells and the ability to save the resultant 
influence map as a bitmap image. This process is shown 
visually in Figure 6.  

When assigning values to an influence map for a particular 
run, a number of items are considered: 

a). Availability of food: the vegetation maps are scanned. In 
this example, the two underlying vegetation maps are dissected 
to determine density values, which exist between 0 and 255. 
Scrub vegetation has a higher relative positive weight than do 
the tree values, due to more accessible food and less of an 
impediment to traversal (acts in tandem with #3). Therefore, 
our influence map for vegetation values is based on the formula 
(t + (1.5 * s)), where t is the value of tree coverage from [0, 
255] in that cell and s is the value of scrub coverage in that cell 
from [0, 255].  

b). Dangers previous generations have encountered. When 
the influence map is calculated at the beginning of a 
generation, the deaths the previous generation encountered are 
strong negatives in a particular cell and as such reduce the 
likelihood of a path passing through there. For each caribou 
that dies in a cell in any previous generation, 0.5 a point of a [0, 
255] range is deducted permanently from that cell.  

c).Terrain difficulty. Since the difficulty of passing through 
dense trees is accounted for by reducing the food value of trees 
in #1, we look at elevation change in a particular cell. We do 
not consider rapidly changing values such as jagged locations, 
but only the maximum undulation. By making higher 
resolution cells, we can emulate the tracking of jagged 
materials. The height variation between the center of a cell and 
it’s neighbor reduces that cell value by 1/h, where h is the 
maximum height of the terrain. In other words, a step of 100 
units in terrain with maximum elevation of 1000 is 0.1 
reduction in that cell’s value. 

 

                
 

d). Proximity to the final goal: the influence map will be 
seeded with a final “arrival” location which will signal the 
completion of the trek. On arrival within that cell, the herd is 
considered done for that generation. 

Those values represent our initial construction of the 
influence map. As food is eaten, the cell containing caribou is 
reduced by 1.0 for each caribou present in each cell. Therefore, 
when selecting nodes for traversal, nodes which are already 
supporting large numbers of caribou will not be selected. This 
map is reset at the end of each generation. A second persistant 
map is used to track caribou deaths over each generation. 

C. Flocking 
The flocking behavior borrows heavily from Reynold’s 

research in  [5] and Microsoft’s Game Development Library in 
[26], with a few key differences. The flock behavior is defined 
as not only the interaction between animals, but also a 
weighted and overarching goal of following a sequential list of 
goal behavior. Base flocking implementation is based on the 
three movement constraints of cohesion, separation and 
alignment; each caribou is assigned to a herd at the start and all 
of the herds start at half capacity. Caribou re-assignment during 
runtime is important to the final evaluation of success and is 
calculated as follows: 

If (Dist(herd[i].center,entity[x])> Dist(herd[j].center, entity[x]  

 && herd[j].count < herd[j].capacity) 

  herd[i].remove(caribou[x]) 

  herd[j].add(caribou[x]) 

Goals are managed by using a simple list. At the end of 
every herd behavior update cycle, the goal list is checked. If the 
list is not empty, the weight for this particular herd is applied to 
the final heading and each caribou adjusts according to that 
weight. The weight is limited within certain bounds to prevent 
unnatural behavior, as excessively heavy weighting will cause 
erratic movement. 

The weighting also has a specific modification added to it 
to encourage the herd to actually transit the land bridge, as 
opposed to allowing them to engage in purely appetite or safety 
driven behavior. This weight will be calculated at two different 

Fig. 6. Converting an influence map from values to image and back 
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points – a value affecting where the next path node is selected 
by shifting the location further towards the opposing side of the 
land bridge and as a variable in the Cultural Algorithm genome 
which will be carried and modified through generations as a 
deciding factor in how much value should be placed on 
completion – if too low, caribou will not cross the bridge in 
time, if too high, they will pass through areas without enough 
food and subsequently die. 

D. Path-finding 
Path-finding uses the A* algorithm to determine the path 

based on weights and distances derived from the influence 
maps; the path the A* algorithm determines directly 
corresponds to the goal list of the particular herd requesting a 
path. 

The A* implementation creates a series of nodes based on 
the center of each cell in the influence map. From this point, 
the weight of the connecting edges is determined by the change 
in cell value; for negative changes, since A* is a nonnegative 
directed graph, the value is simply set to 0. An example route is 
shown in figure 7: 

 
 

 

  
           The principle of the method is based on the current 
distance traveled plus the estimated distance left to reach the 
goal; the estimated distance is heuristic driven. The path with 
the estimated shortest distance is tried until it is proven that it 
is longer than the next shortest estimated distance or the goal 
is reached 

Our goal is simple: we wish to maximize the number of 
arriving caribou across our terrain with each passing cycle until 
we reach our threshold. With this in mind, we take our design 
for our individuals, which are herds, and their chromosomes 
which shall be maximized, which are defined in Table 1.  

Our first generation is initialized with parameters within the 
following range. These values will represent our normative 
knowledge in the Cultural Algorithm, as they represent the 
allowable range for an individual in this population: 

 

 

 

 

We select a common herd size and capacity for all herds in 
order to prevent certain arriving herds from being unfairly 
favored or discriminated against due to a poor initial size. For 
similar reasons, our locations are all initialized within a smaller 
starting box, allowing intermingling of herds at the very 
beginning. This has the added bonus of being a real world 
simulation of funneling herds into the land bridge as they move 
from a larger area to smaller. All herds likewise share the same 
initial goals, since a common influence map is shared between 
the CA's individuals (herds). We initiate all movement within 
the box on the left below, and an individual herd is considered 
“arrived” if the calculated center arrives within the box to the 
right. 

We have mentioned that our genome represents the 
normative knowledge of our Belief Space. The rest of our 
Cultural Algorithm’s knowledge is derived from influence 
maps. This vegetation – and the intensity to which our 
individuals seek it – is an important source of individual 
success. Also, we track caribou deaths via a separate influence 
map, which is treated as situational and temporal knowledge – 
caribou that have expired in particular areas at particular times 
are used as a behavior variable in achieving success of crossing 
the land-bridge. 

Once all individuals have arrived, or at least one has arrived 
after the time allotted has expired, the real-time component 
ends, and the CA begins to compare the surviving individuals. 
The individuals are ranked on the following objective function: 

v = herdCount * avgHerdCaolories * (1/ (MaxTime /  

                                herdTransTime) )                            (1) 

avgHerdCalories is the average calorie count and is 
normalized between 1 and the maximum herd capacity, to 
prevent small herds who have fed extremely well from tilting 
the results in their favor. This function is useful in many 
aspects. Herds with the largest number of surviving members 
are rewarded the most, as are those with high calorie counts. 
We also consider the inverse of the travel time to be a valuable 
factor here, as we do not have a fully real-time system capable 
of changing seasons and we consider this to be during fall and 
spring migration, where a short transit time is valuable.  

Parameter Type Value 

herdSize Int capacity / 2 

detectionDist Float 40.0f– 00.0f 

separationDist Float 30.0f – 70.0f 

oldDirInfluence Float 0.5f – 1.5f 

flockDirInfluence Float 0.5f – 1.5f 

randomDirInfluence Float 0.01f – 0.1f 

perMemberWeight Float 0.5f – 1.5f 

finalGoalWeight Float 0.0f – 1.0f 

Fig. 7. Sample A* path-finding route – grey are obstacles, green is start, 
blue is finish and the numbers inside each cell are the distance so far plus 

the weight of the heuristic (in this case, distance) 

TABLE 1       Initialization Values 
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Influence maps, representing several sources of knowledge, 
are updated each time a caribou expires with the negative 
information associated with the death. The top 10% of 
surviving performers are elected to update the normative 
knowledge genome. Based on their scores above, an average 
successful gene is created and merged with the current best 
values that already exist in our Belief Space – this current best 
value is shifted 50% of the way towards what we have just 
elected as the best average genome. 

This newly updated Belief Space is now communicated to 
the individual population based on our selected topological 
operator, which in this case is fully-connected: every individual 
receives some influence on their behavior, in the necessary 
direction according to the values described in table 2. This has 
the effect of moving individuals towards those who have 
already proven themselves to be successful, which is now 
reflected in the Belief Space. 

 

Parameter Type Value 
herdSize Int capacity / 2 
detectionDist Float +/- 0.5f 
separationDist Float +/- 0.5f 
oldDirInfluence Float +/- 0.01f 
flockDirInfluence Float +/- 0.01f 
randomDirInfluence Float +/- 0.002f 
perMemberWeight Float +/- 0.01f 
finalGoalWeight Float +/- 0.01f 
 

Herd size is reset to half of capacity and the next generation 
runs until we reach our terminating condition. 

III. EXPERIMENTAL FRAMEWORK AND RESULTS 
In order to demonstrate the suitability of the mechanisms 

selection chosen for this application, we construct and run 10 
simulations and dissect the results statistically to determine 
their validity. Each simulation was run on a stable machine and 
the results will be detailed in the section below. The system  

 

specifications are described in Table 3:  

 

CPU Intel x86 Dual 3.2GHz 
RAM 4GB DDR2 1066 
GPU 1GB Palit 9600 GT Sonic 

 

A. Parameter Design 
All of our experiments were executed on a single generated 

terrain height-map, tree map, and scrub map. The maps were 
all grey scale images generated and imported by the methods 
defined in previous section. These topographical images are the 
2D representations of the 3D land bridge across which the 
caribou will be migrating. 

With the terrain information above, 10 separate runs of 100 
generations a piece were made with the starting parameters 
described in table 4. Runs 1 through 5 were generated running 
south to north, and runs 6 through 10 were running north to 
south. All the weights are randomly initiated within specific 
ranges. Five herds were used for each run simultaneously. 
Presented below are the initialization values of the herd that 
would be selected as the most influential herd of the first 
generation; their final results – the last generation –  are shown 
in table 5. The details of exemplary runs will be shown 
afterwards. When viewing the results, the white areas on the 
grayscale maps are traversable and the black areas are not. 

We will first present our run results and then discuss what 
they mean. In Table 5 the results of the most successful herd of 
the final generation is displayed. The pertinent weights for 
group behavior are shown, as well as the sizes of the finishing 
herds. Further analysis of select runs can be found below the 
table. The “Avg Nutrition” is based on a range from 0-100 and 
that distance traveled is the most accurate distance between 
waypoints based on estimates of terrain and data synchronicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 
Run 

1 2 3 4 5 6 7 8 9 10 

herdSize 50 50 50 50 50 50 50 50 50 50 

detectionDist 47.3 65.1 92.5 56.8 80.2 51.4 93.7 76.2 85.6 95.8 

separationDist 69.0 45.8 62.2 43.0 64.8 50.1 62.1 52.3 68.9 51.9 

oldDir 0.7 0.6 1.1 0.8 1.1 0.9 1.1 1.1 1.2 1.2 

flockDir 1.4 0.7 1.3 0.9 1.4 1.3 0.5 1.1 1.1 0.8 

randomDir 0.06 0.04 0.05 0.09 0.09 0.01 0.04 0.08 0.03 0.02 

perMemberWeight 1.0 1.4 1.1 0.6 1.2 0.6 1.0 0.7 0.8 1.3 

finalGoalWeight 0.8 0.0 0.96 0.85 0.61 0.71 0.89 0.01 0.67 0.89 

TABLE 2        Transition Values Based on Success 

TABLE 3     Test Platform Specifications 

TABLE 4    Starting Values for Test Runs 
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We will now discuss several notable runs to show how 
certain runs are successful or unsuccessful. Figure 8 below 
shows the direction the caribou are traveling across our digital 
land bridge as tied to the actual bathymetric data.  

 
 

Figure 9 below shows our survival rate over the 10 runs. 
Notice the steadily increasing values for all individuals, 
indicating a continuous improvement based on changing Belief 
Space values. The Y axis is the number of surviving herd 
members, the X axis the generation. 

 
 

 

 

Runs #7 and #9 were the most successful runs, with some 
of the highest survival rates at the end of the 100 requisite runs; 
the migratory pattern carried the caribou from South to North. 
By comparing relative values we see that a middle-to-high 
finalGoalWeight, which directs the herd towards the 
destination, did not overwhelm the search for food, allowing a 
greater number of caribou to consume enough and survive the 
transit. We also see that a high detection distance allowed us to 
have a higher selection range of cells to choose for our path 
nodes. This path combined both the grazing and migration 
goals together. 

Runs #2 and #8, running North to South and South to North 
respectively, shared a common problem with a very low 
starting parameter to seek the other end of the land-bridge. 
Therefore the herds ended up in high food areas, they did not 
starve, except they grazed until the allocated time began to run 
out and they drifted through areas already consumed and would 
starve. These paths represented more of a grazing approach 
than a migration pathway. With a higher goal-seeking desire, 
they would traverse the bridge faster, not having to continue to 
wander for food. However, as the belief space was updated, 
more and more would begin to cross, though they were never 
as successful as the others within this generation limit.  

Runs #7 and #10 was another example of a successful run 
which went from North to South. Due to a high finalGoal 
variable, the caribou were able to guarantee that they would 
migrate across the land bridge in time; also, their high detection 
allowed them to plot a transitory path which would lead them 
through certain areas of high nutritional value. However, their 
very high goal weights made them cross with little respect for 
food, leading to low nutrition, even with a high survival rate. 

By comparing our run results, we find that there are a few 
important variables to consider. We cannot seek the goal too 
strongly, or we will miss locations which have a higher 
proportion of food and thus will begin to starve out the herd. 
We also cannot have too high a wandering variable, as we will 
spend too long transitioning the terrain, just as a high old 

parameter 
Run 

1 2 3 4 5 6 7 8 9 10 

Starting Size 50 50 50 50 50 50 50 50 50 50 

Finishing Size 44 36 41 39 41 42 50 34 47 48 

Starvation Count 6 14 9 11 9 8 0 16 3 2 

Avg Nutrition 73 89 65 21 72 16 25 71 89 21 

Dist Traveled 11710 6581 8423 16715 12451 8189 8634 7731 11314 13459 

detectionDist 54.8 54.3 87.1 63.3 90.7 44.9 100.0 41.7 100.0 96.3 

separationDist 61.0 37.5 53.7 51.5 45.3 61.3 65.6 53.3 72.4 50.4 

oldDir 0.51 0.5 1.35 0.92 0.85 1.44 1.41 0.61 1.19 1.1 

flockDir 1.41 1.5 0.81 1.05 1.35 1.12 1.01 0.95 0.86 1.5 

randomDir 0.06 0.048 0.06 0.1 0.18 0.032 0.028 0.1 0.054 0.06 

perMemberWeight 0.78 1.0 0.82 0.2 0.90 0.45 0.93 0.46 0.51 0.69 

finalGoalWeight 0.762 0.510 0.932 0.81 0.642 0.941 0.812 0.6 0.814 0.932 

Fig. 8.  The Direction and Location of our simulation 

Fig. 9.    The run comparisons 

TABLE 5      Results of Best Herd for Final Generation for Each Run 
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direction drive will keep caribou trapped in particular locations 
or vectors for too long. A high detection distance, which is 
utilized in both the ability to plan paths and find other members 
of the herd to follow, is also useful in locating efficient 
pathways by giving a broader spectrum of possible choices. 
Therefore we need to blend or balance the two goals in order to 
get a migration pathway that does not take too long but on the 
other hand does not lose too many individuals. A high success 
rate, being based on timely completion and well fed caribou, 
should have high detection distance, a moderate migration goal 
and a moderate random component for food discovery. 

Below, in figures 10 and 11, we can see run time examples 
of caribou behavior across the land bridge, showing their 
grazing and migratory actions. 

 

 

 

 

IV. CONCLUSION 
In this paper we have developed an approach to learning 

migratory behavior using Cultural Algorithms. The Cultural 
Algorithms generate and use influence maps to compute path-
planning behavior using the A* algorithm. The resultant runs 
shown the different degrees to which the goal of migration and 
food procurement can be combined. That is, if one moves too 
quickly, some will not be able to get sufficient amount so food 
and will die along the way. On the other hand, if one focuses 
on food procurement then migration behavior can slow to a 
stand still. This might be behavior exhibited by the caribou 
during the summer season. 

To produce a solid and sustained migration one needs to 
balance the food procurement goal and the directional goals to 
together. These behaviors emerged from the system as a result 
of the cultural learning process. What remains to be done is to 
integrate in a defensive component in herd migratory behavior 
relative to human and other predators. That is a topic for future 
work discussed below. 

A. Future Work 
We have seen that the serious game modeling of caribou 

migration using Cultural Algorithms to learn successful 
migratory behavior has had success in generating plausible 
behavior; there are a number of aspects which are open for 
further and more refined development. Many of these 
components can be integrated with the simulation easily and 
with external development only; an example would be more 
precise terrain generation – to integrate the new data, only new 
maps would need to be supplied. 

Paleolithic hunters often constructed drive lanes, cairns and 
campsites when canvassing the land bridge. While the current 
construction allows the inclusion of an influence map to 
simulate the existence of such materials in affecting animal 
behavior, further work would allow specifications and 
implementation according to archeological records. 

Weather and seasons would be an appropriate addition, 
allowing the simulation to display multiple variations that 
would affect the transition across the land bridge. 

Other fauna would complete the ecosphere with the 
addition of food competitors and hunters of the caribou. For 
example, particular types of herbivores in the tundra 
environment may compete directly with caribou and should be 
modeled as such; wolves in hostile environs also would have 
an effect on behavior and generation growth and transition. 

More dynamic influence maps would allow for shifting 
priorities when creating the influence maps which are the 
guiding influence over the bridge and the main source of input 
towards the path selection, which in many ways determines 
how the herds move.  

Creating influence maps which will take into effect 
changing seasons and different foliage encourage the maps to 
be trained against any discovered real world data. 
Modifications to influence map values during run time is 
currently supported, but logic for animal consumption, 
environmental effects and others should be included to change 
the terrain as the herds drive though. This will also need to 
include changes to the display parameters for visual cues.  
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Establish the Three Theorems:
DP Optimally Self-Programs Logics Directly from Physics

Juyang Weng

Abstract—In artificial intelligence (AI) there are two major
schools, symbolic and connectionist. The Developmental Pro-
gram (DP) self-programs logic into a Developmental Network
(DN) directly from physics or data. Weng 2011 [6] proposed
three theorems about the DN which bridged the two schools:
(1) From any complex FA that demonstrates human knowledge
through its sequence of the symbolic inputs-outputs, the DP
incrementally develops a corresponding DN through the image
codes of the symbolic inputs-outputs of the FA. The DN learning
from the FA is incremental, immediate and error-free. (2) After
learning the FA, if the DN freezes its learning but runs, it
generalizes optimally for infinitely many image inputs and
actions based on the embedded inner-product distance, state
equivalence, and the principle of maximum likelihood. (3) After
learning the FA, if the DN continues to learn and run, it “thinks”
optimally in the sense of maximum likelihood based on its past
experience. This paper presents the proofs.

I. INTRODUCTION

The major differences between a symbolic network (SN)
and a Developmental Network (DN) are illustrated in Fig. 1.

Marvin Minsky 1991 [4] and others argued that symbolic
models are logical and clean, while connectionist (he meant
emergent) models are analogical and scruffy. The logic capa-
bilities of emergent networks are still unclear, categorically.

Computationally, feed-forward connections serve to feed
sensory features [5] to motor area for generating behaviors. It
has been reported that feed-backward connections can serve
as class supervision [2], attention [1], and storage of time
information.

In the following, we analyze how the DN theory bridges
the symbolic school and the connectionist school.

II. DP ALGORITHM

The small DP algorithm self-programs logic into a huge
DN directly from physics. A DN has its area Y as a “bridge”
for its two banks, X and Z. If Y is meant for modeling
the entire brain, X consists of all receptors and Z consists
of all muscles neurons. Y potentially can also model any
Brodmann area in the brain. The most basic function of an
area Y seems to be prediction — predict the signals in its
two vast banks X and Y through space and time.

Algorithm 1 (DP): Input areas: X and Z. Output areas: X
and Z. The dimension and representation of X and Y areas
are hand designed based on the sensors and effectors of the

Juyang Weng is a professor at the Department of Computer Sci-
ence and Engineering, Cognitive Science Program, and Neuroscience Pro-
gram, Michigan State University, East Lansing, MI, 48824 USA (email:
weng@cse.msu.edu) and a visiting professor at the School of Computer
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Fig. 1. Why a symbolic machine (or Symbolic Network SN,
probabilistic or non-probabilistic) is task-specific and cannot self-
program but the DP for an emergent automaton DN is not task-
specific and can self-program DN for a wide variety of tasks directly
from physics. An SN uses handcrafted task-specific, handcrafted
representations, IA, OA, and IOM. For example, the human pro-
grammer perceives the relevant patch and denotes it as a symbol
σ and disregards other parts σ̄ in the current input image. The DP
of a DN is not task-specific, so that the DP self-programs logic
directly from the physical world. It attends a patch in image x that
corresponds to σ and attends part of z to predict the next X image
x′ and the next Z image z′. An effector image z is equivalent to
the corresponding state q which includes all the currently attended
context in space and time (perception and action). All the pink
blocks are handcrafted. All the yellow blocks are emergent.

species (or from evolution in biology). Y is the skull-closed
(inside the brain), not directly accessible by the outside.

1) At time t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector
r, where V contains all the synaptic weight vectors
and G stores all the neuronal ages. For example, use
the generative DN method discussed below.

2) At time t = 1, 2, ..., for each A in {X,Y, Z} repeat:
a) Every area A performs mitosis-equivalent if it is

needed, using its bottom-up and top-down inputs
b and t, respectively.

b) Every area A computes its area function f , de-
scribed below,

(r′, N ′) = f(b, t, N)

where r′ is its response vector.
c) For every area A in {X,Y, Z}, A replaces: N ←

N ′ and r← r′.
© BMI Press 2013 19



In the remaining discussion, we assume that Y models
the entire brain. If X is a sensory area, x ∈ X is always
supervised. The z ∈ Z is supervised only when the teacher
chooses to. Otherwise, z gives (predicts) motor output.

The area function f which is based on the theory of
Lobe Component Analysis (LCA) [7], a model for self-
organization by a neural area. Each area A has a weight
vector v = (vb,vt). Its pre-response vector is:

r(vb,b,vt, t) =
vb
‖vb‖

· b

‖b‖
+

vt
‖vt‖

· t

‖t‖
= v̇ · ṗ (1)

which measures the degree of match between the direc-
tions of v̇ = (vb/‖vb‖,vt/‖vt‖) and ṗ = (ḃ, ṫ) =
(b/‖b‖, t/‖t‖).

To simulate lateral inhibitions (winner-take-all) within
each area A, top k winners fire. Considering k = 1, the
winner neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t). (2)

The area dynamically scale top-k winners so that the top-
k respond with values in (0, 1]. For k = 1, only the single
winner fires with response value yj = 1 and all other neurons
in A do not fire. The response value yj approximates the
probability for ṗ to fall into the Voronoi region of its v̇j
where the “nearness” is r(vb,b,vt, t).

All the connections in a DN are learned incrementally
based on Hebbian learning — cofiring of the pre-synaptic ac-
tivity ṗ and the post-synaptic activity y of the firing neuron.
If the pre-synaptic end and the post-synaptic end fire together,
the synaptic vector of the neuron has a synapse gain yṗ.
Other non-firing neurons do not modify their memory. When
a neuron j fires, its firing age is incremented nj ← nj + 1
and then its synapse vector is updated by a Hebbian-like
mechanism:

vj ← w1(nj)vj + w2(nj)yjṗ (3)

where w2(nj) is the learning rate depending on the firing age
(counts) nj of the neuron j and w1(nj) is the retention rate
with w1(nj) +w2(nj) ≡ 1. The simplest version of w2(nj)
is w2(nj) = 1/nj which corresponds to:

v
(i)
j =

i− 1

i
v
(i−1)
j +

1

i
1ṗ(ti), i = 1, 2, ..., nj , (4)

where ti is the firing time of the post-synaptic neuron j. The
above is the recursive way of computing the batch average:

v
(nj)
j =

1

nj

nj∑
i=1

ṗ(ti) (5)

The initial condition is as follows. The smallest nj in Eq. (3)
is 1 since nj = 0 after initialization. When nj = 1, vj on
the right side is used for pre-response competition but does
not affect vj on the left side since w1(1) = 1− 1 = 0.

A component in the gain vector yjṗ is zero if the corre-
sponding component in ṗ is zero.

III. FORMULATIONS

As we need a slight deviation from the standard definition
of FA, let us look at the standard definition first.

Definition 1 (Language acceptor FA): A finite automaton
(FA) M is a 5-tuple M = (Q,Σ, q0, δ, A), where Q is a
finite set of states, consists of symbols. Σ is a finite alphabet
of input symbols. q0 ∈ Q is the initial state. A ⊂ Q is the
set of accepting states. δ : Q×Σ 7→ Q is the state transition
function.

This classical definition is for a language acceptor, which
accepts all strings x from the alphabet Σ that belongs to a
language L. It has been proved [3] that given any regular
language L from alphabet Σ, there is an FA that accepts
L, meaning that it accepts exactly all x ∈ L but no other
string not in L. Conversely, given any FA taking alphabet
Σ, the language L that the FA accepts is a regular language.
However, a language FA, just like any other automata, only
deals syntax not semantics. The semantics is primary for
understanding a language and the syntax is secondary.

We need to extend the definition of FA for agents that run
at discrete times, as follows:

Definition 2 (Agent FA): A finite automaton (FA) M for a
finite symbolic world is a 4-tuple M = (Q,Σ, q0, δ), where
Σ and q0 are the same as above and Q is a finite set of
states, where each state q ∈ Q is a symbol, corresponding
to a set of concepts. The agent runs through discrete times
t = 1, 2, ..., starting from state q(t) = q0 at t = 0. At each
time t−1, it reads input σ(t−1) ∈ Σ and transits from state
q(t− 1) to q(t) = δ(q(t− 1), σ(t− 1)), and outputs q(t) at

time t, illustrated as q(t− 1)
σ(t−1)−→ q(t).

The inputs to an FA are symbolic. The input space is
denoted as Σ = {σ1, σ2, ..., σl}, which can be a discretized
version of a continuous space of input. In sentence recog-
nition, the FA reads one word at a time. The number l is
equal to the number of all possible words — the size of the
vocabulary. For a computer game agent, l is equal to the total
number of different percepts.

The outputs (actions) from a language acceptor FA are
also symbolic, A = {a1, a2, ..., an} which can also be a
discretized version of a continuous space of output. For a
sentence detector represented by an FA, when the FA reaches
the last state, its action reports that the sentence has been
detected.

An agent FA is an extension from the corresponding
language FA, in the sense that it outputs the state, not only
the acceptance property of the state. The meanings of each
state, which are handcrafted by the human programmer but
are not part of the formal FA definition, are only in the mind
of the human programmer. Such meanings can indicate that
a state is an accepting state or not, as a special case of
many other meanings associated with the state. However,
such concepts are only in the mind of the human system
designer, not something that the FA is “aware” of. This
is a fundamental limitation of all symbolic models. The
Developmental Network (DN) described below do not use
any symbols, but instead (image) vectors from the real-world
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Fig. 2. Conceptual correspondence between an Finite Automaton
(FA) with the corresponding DN. (a) An FA, handcrafted and static.
(b) A corresponding DN that simulates the FA. It was taught to
produce the same input-out relations as the FA in (a). A symbol
(e.g., z2) in (a) corresponds to an image (e.g., (z1, z2, ..., z4) =
(0, 1, 0, 0)) in (b).

sensors and real-world effectors. As illustrated in Fig. 2, a
DN is grounded in the physical environment but an FA is
not.

Fig. 3 gives an example of the agent FA. Each state is
associated with a number of cognitive states and actions,
shown as text in the lower part of Fig. 3, reporting action
for cognition plus a motor action. The example in Fig. 3
shows that an agent FA can be very general, simulating an
animal in a micro, symbolic world. The meanings of each
state in the lower part of Fig. 3 are handcrafted by, and only
in the mind of, the human designer. These meanings are not
a part of the FA definition and are not accessible by the
machine that simulates the FA.

Without loss of generality, we can consider that an agent
FA simply outputs its current state at any time, since the
state is uniquely linked to a pair of the cognition set and the
action set, at least in the mind of human designer.

A. Completeness of FA

It has been proved [3] that an FA with n states partitions
all the strings in Σ into n sets. Each set is called equivalence
class, consisting of strings that are indistinguishable by the
FA. Since these strings are indistinguishable, any string x
in the same set can be used to denote the equivalent class,
denoted as [x]. Let Λ denote an empty string. Consider
Fig. 3. The FA partitions all possible strings into 6 equivalent
classes. [Λ] = [“calculus”] as the agent does not know
about “calculus” although it is in Σ. All the strings in the
equivalent class [Λ] end in z1. All strings in the equivalent
class [“kitten” “looks”] end in z4, etc.

The completeness of agent FA can be described as fol-
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“young” “young”

“young”
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Fig. 3. An FA simulates an animal. Each circle indicates a context
state. The system starts from state z1. Supposing the system is at
state q and receives a symbol σ and the next state should be q′, the
diagram has an arrow denoted as q σ−→ q′. A label “other” means
any symbol other than those marked from the out-going state. Each
state corresponds to a set of actions, indicated below the FA. The
“other” transitions from the lower part are omitted for brevity.

lows. Given a vocabulary Σ representing the elements of a
symbolic world, a natural language L is defined in terms
of Σ where the meanings of all sentences in L are defined
by the set of equivalent classes, denoted by Q. When the
number of states is sufficiently large, a properly designed
FA can sufficiently characterize the cognition and behaviors
of an agent living in the symbolic world of vocabulary Σ.

B. DN Simulates FA

Next, let us consider how a DN learns to simulate any FA.
First we consider the mapping from symbolic sets Σ and Q,
to vector spaces X and Z.

Definition 3 (Symbol-to-vector mapping): A symbol-to-
vector mapping m is a one-to-one mapping m : Σ 7→ X .
We say that σ ∈ Σ and x ∈ X are equivalent, denoted as
σ ≡ x, if x = m(σ).

A binary vector of dimension d is such that all its
components are either 0 or 1. It simulates that each neuron,
among d neurons, either fires with a spike (s(t) = 1) or
without (s(t) = 0) at each sampled discrete time t = ti.
From discrete spikes s(t) ∈ {0, 1}, the real valued firing rate
at time t can be estimated by v(t) =

∑
t−T<ti≤t s(ti)/T ,

where T is the temporal size for averaging. A biological
neuron can fire at a maximum rate around v = 120 spikes per
second, producible only under a laboratory environment. If
the brain is sampled at frequency f = 1000Hz, we consider
the unit time length to be 1/f = 1/1000 second. The timing
of each spike is precise up to 1/f second at the sampling
rate f , not just an estimated firing rate v, which depends on
the temporal size T (e.g., T = 0.5s). Therefore, a firing-
rate neuronal model is less temporally precise than a spiking
neuronal model. The latter, which DN adopts, is more precise
for fast sensorimotor changes.

Let Bdp denote the d-dimensional vector space which
contains all the binary vectors each of which has at most
p components to be 1. Let Edp ⊂ Bdp contains all the binary
vectors each of which has exactly p components to be 1.
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Definition 4 (Binary-p mapping): Let Q = {qi | i =
1, 2, ..., n}. A symbol-to-vector mapping m : Q 7→ Bdp is a
binary-p mapping if m is one to one: That is, if zi ≡ m(qi)
then qi 6= qj implies zi 6= zj .
The larger the p the more symbols the space of Z can repre-
sent. However, through a binary-p mapping, each symbol qi
always has a unique vector z ∈ Z. Note that different q’s are
mapped to not only different z’s but also different directions
of z’s as the input p of DN is a unit ṗ.

Suppose that a DN is taught by supervising binary-p codes
at its exposed areas, X and Z. When the motor area Z is
free, the DN performs, but the output from Z is not always
exact due to (a) the DN outputs in real numbers instead of
discrete symbols and (b) there are errors in any computer
or biological system. The following binary conditioning can
prevent error accumulation, which the brain seems to use
through spikes.

Definition 5 (Binary conditioning): For any vector from
z = (z1, z2, ..., zd), the binary conditioning of z forces every
real-valued component zi to be 1 if the pre-response of zi
is larger than the machine zero — a small positive bound
estimating computer round-off noise.
The output layer Z that uses binary-p mapping must use the
binary conditioning, instead of top-k competition with a fixed
k, as the number of firing neurons ranges from 1 to p.

C. DP for Generative DN (GDN)

Algorithm 2 (DP for GDN): A GDN is a DN that gives
the following specific way of initialization. It starts from pre-
specified dimensions for the X and Z areas, respectively. X
represents receptors and is totally determined by the current
input. But it incrementally generates neurons in Y from an
empty Y . Each neuron in Z is initialized by a synaptic vector
v of dimension 0, age 0. Suppose V = {vi = (xi, zi) | x ∈
X, z ∈ Z, i = 1, 2, ..., c} is the current synaptic vectors
in Y . Whenever the network takes an input p = (x, z),
compute the pre-resppnses in Y . If the top-1 winner in Y has
a pre-response lower than 2 (i.e., p 6∈ V ), simulate mitosis-
equivalent by doing the following:

1) Increment the number of neurons, c← c+ 1.
2) Add a new Y neuron. Set the weight vector v = ṗ,

its age to be 0, and its pre-response to be 2 since it is
the perfect match based on Eq. (1). There is no need
to recompute the pre-responses.

The response value of each Z neuron is determined by
the starting state (e.g., background class). As soon as the
first Y neuron is generated, every Z neuron will add the first
dimension in its synaptic vector in the following DN update.
This way, the dimension of its weight vector continuously
increases together with the number c of Y neurons.

Lemma 1 (Properties of a GDN): Suppose a GDN simu-
lates any given FA using top-1 competition for Y , binary-p
mapping, and binary conditioning for Z, and update at least
twice in each unit time. Each input x(t−1) is retained during
all DN updates in (t− 1, t]. Such a GDN has the following
properties for t = 1, 2, ...:

1) The winner Y neuron matches perfectly with input
p(t− 1) ≡ (q(t− 1), σ(t− 1)) with v = ṗ and fires,
illustrated in Fig. 4(a) as a single transition edge (red).

2) All the synaptic vectors in Y are unit and they never
change once initialized, for all times up to t. They only
advance their firing ages. The number of Y neurons c
is exactly the number of learned state transitions up to
time t.

3) Suppose that the weight vector v of each Z neuron is
v = (p1, p2, ..., pc(Y )), and Z area uses the learning
rate straight recursive average w2(nj) = 1/nj . Then
the weight pj from the j-th Y neuron to each Z neuron
is

pj = Prob(j-th Y neuron fires | the Z neuron fires)
= fj/n, (6)

j = 1, 2, ..., c(Y ), where fj is the number of times
the j-th Y neuron has fired conditioned on that the Z
neuron fires, and n is the total number of times the Z
neuron has fired.

4) Suppose that the FA makes transition q(t − 1)
σ(t−1)−→

q(t), as illustrated in Fig. 4(a). After the 2nd DN
update, Z outputs z(t) ≡ q(t), as long as Z of DN is
supervised for the 2nd DN update when the transition
is received by Z the first time. Z then retains the values
automatically till the end of the first DN update after
t.

Proof: The proof below is a constructive proof, instead
of an existence one. To facilitate understanding, the main
ideas are illustrated in Fig. 4. Let the X of the DN take the
equivalent inputs from Σ using a symbol-to-vector mapping.
Let Z be supervised as the equivalent states in Q, using a
binary-p mapping. The number of firing neurons Z depends
on the binary-p mapping. The DN lives in the simulated sen-
sorimotor world X × Z determined by the sensory symbol-
to-vector mapping: mx : Σ 7→ X and the binary-p symbol-
to-vector mapping mz : Q 7→ Z.

We prove it using induction on integer t.
Basis: When t = 0, set the output z(0) ≡ q(0) = q0

for the DN. Y has no neuron. Z neurons have no synaptic
weights. All the neuronal ages are zeros. The properties 1,
2, 3 and 4 are trivially true for t = 0.

Hypothesis: We hypothesize that the above four properties
are true up to integer time t. In the following, we prove that
the above properties are true for t+ 1.

Induction step: During t to t + 1, suppose that the FA
makes transition q(t)

σ(t)−→ q(t + 1). The DN must do the
equivalent, as shown below.

At the next DN update, there are two cases for Y : Case 1:
the transition is observed by the DN as the first time. Case
2: the DN has observed the transition.

Case 1: new Y input. First consider Y . As the input
p(t) = (x(t)), z(t)) to Y is the first time, ṗ 6∈ V . Y
initializes a new neuron whose weight vector is initialized
as vj = ṗ(t) and age nj = 0. The number of Y neurons
c is incremented by 1 as this is a newly observed state
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Fig. 4. Model the brain mapping, DN, and SN. In general, the brain performs external mapping b(t) : X(t − 1) × Z(t − 1) 7→ X(t) × Z(t) on the
fly. (a) An NS samples the vector space Z using symbolic set Q and X using Σ, to compute symbolic mapping Q(t − 1) × Σ(t − 1) 7→ Q(t). This
example has four states Q = {q1, q2, q3, q4}, with two input symbols Σ = {σ1, σ2}. Two conditions (q, σ) (e.g., q = q2 and σ = σ2) identify the active
outgoing arrow (e.g., red). q3 = δ(q2, σ2) is the target state pointed to by the (red) arrow. (b) The grounded DN generates the internal brain area Y as
a bridge, its bi-directional connections with its two banks X and Z, the inner-product distance, and adaptation, to realize the external brain mapping. It
performs at least two network updates during each unit time. To show how the DN learns a SN, the colors between (a) and (b) match. The sign ≡ means
“image code for”. In (b), the two red paths from q(t− 1) and σ(t− 1) show the condition (z(t− 1),x(t− 1)) ≡ (q(t− 1), σ(t− 1)). At t− 0.5, they
link to y(t − 0.5) as internal representation, corresponding to the identification of the outgoing arrow (red) in (a) but a DN does not have any internal
representation. At time t, z(t) ≡ q(t) = δ(q(t−1), σ(t−1)) predicts the action. But the DN uses internal y(t−0.5) to predict both state z(t) and input
x(t). The same color between two neighboring horizontal boxes in (b) shows the retention of (q, σ) image in (a) within each unit time, but the retention
should be replaced by temporal sampling in general. The black arrows in (b) are for predicting X . Each arrow link in (b) represents many connections.
When it is shown by a non-black color, the color indicates the corresponding transition in (a). Each arrow link represents excitatory connections. Each bar
link is inhibitory, representing top-k competition among Y neurons.

transition. From the hypothesis, all previous Y neurons in
V are still their originally initialized unit vectors. Thus, the
newly initialized vj is the only Y neuron that matches ṗ(t)
exactly. With k = 1, this new Y neuron is the unique winner
and it fires with yj = 1. Its Hebbian learning gives age
advance nj ← nj + 1 = 0 + 1 = 1 and Eq.(3) leads to

vj ← w1(nj)ṗ + w2(nj) · 1 · ṗ
= (w1(nj) + w2(nj))ṗ = 1 · ṗ = ṗ. (7)

As DN updates at least twice in the unit time, Y area is
updated again for the second DN update. But X and Z retain
their values within each unit time, per simulation rule. Thus,
the Y winner is still the same new neuron and its vector still
does not change as the above expression is still true. Thus,
properties 1 and 2 are true for the first two DN updates within
(t, t+ 1].

Next consider Z. Z retains its values in the first DN
update, per hypothesis. For the 2nd DN update, the response
of Z is regarded the DN’s Z output for this unit time, which
uses the above Y response as illustrated in Fig. 4. In Case
1, Z must be supervised for this second DN update within
the unit time. According to the binary-p mapping from the
supervised q(t + 1), Eq. (3) is performed for up to p Z
neurons:

vj ← w1(nj)v̇j + w2(nj) · 1 · ṗ. (8)

Note that Z has only bottom input p = y and the normalized
vector ṗ is binary. That is, only one component (the new one)

in ṗ is 1 and all other components are zeros. All Z neurons
do not link with this new Y neuron before the 2nd DN
update. Consider two subcases, subcase (1.a) the Z neuron
should fire at the end of this unit time, and subcase (1.b) the
Z neuron should not fire.

Subcase (1.a): the Z neuron should fire. All Z neurons that
should fire, up to p of them, are supervised to fire for the 2nd
DN update by the Z area function. Suppose that a supervised-
to-fire Z neuron has a synapse vector v = (p1, p2, ..., pc)
with the new pc just initialized to be 0 since the new Y
neuron j = c now fires. From the hypothesis, pi = fi/n,
i = 1, 2, ..., c − 1. But, according to the Z initialization in
GDN, pc = 0 for the new dimension initialization. Then
from 0 = pc = fc/n, we have fc = 0 which is correct for
fc. From Eq. (3), the c-th component of v is

vc ←
n

n+ 1
· fc
n

+
1

n+ 1
· 1 · 1 =

fc + 1

n+ 1
=

1

n+ 1
. (9)

which is the correct count for the new vc, and the other
components of v are

vi ←
n

n+ 1
· fi
n

+
1

n+ 1
· 1 · 0 =

fi + 0

n+ 1
=

fi
n+ 1

, (10)

for all i = 1, 2, ..., c− 1, which is also the correct count for
other components of the v synaptic vector. Every firing Z
neuron advances its age by 1 and correctly counts the firing
of the new c-th Y neuron. As Y response does not change for
more DN updates within (t, t + 1] and the firing Y neuron
meets a positive 1/nj weight to the firing Z neuron with
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age nj , the Z area does not need to be supervised after the
second DN update within (t, t+ 1].

Subcase (1.b): the Z neuron should not fire. All Z neurons
that should not fire must be supervised to be zero (not firing).
All such Z neurons cannot be linked with the new Y neuron
before, as it was not present. The new added weight for this
new Y neuron is initialized to 0 in the Z area function.
All these non-firing neurons keep their counts and ages
unchanged. As Y response does not change for more DN
updates within (t, t + 1], the Z area does not need to be
supervised after the second DN update within (t, t+1], since
the only firing Y neuron meets a 0 weight to the Z neuron.

The binary conditioning for Z makes sure that all the Z
neurons that have a positive pre-response to fire fully. That
is, the properties 3 and 4 are true from the first two ND
updates within (t, t+ 1].

Case 2: old Y input. First consider Y . To Y , p(t) =
(x(t), z(t)) has been an input before. From the hypothesis,
the winner Y neuron j exactly matches ṗ(t), with vj = ṗ(t).
Eq. (7) still holds using the inductive hypothesis, as the
winner Y neuron fires only for a single ṗ vector. Thus,
properties 1) and 2) are true from the first ND update within
(t, t+ 1].

Next consider Z. Z retains its previous vector values in
the first DN update, per hypothesis. In the 2nd DN update,
the transition is not new, we show that Z does not need to
be supervised during the unit time (t, t+ 1] to fire perfectly.
From Eq. (1), the Z pre-response is computed by

r(vb,b) =
vb
‖vb‖

· b

‖b‖
=

vb
‖vb‖

· y

‖y‖
(11)

where ẏ is binary with only a single positive component and
t is absent as Z does not have a top-down input. Suppose that
Y neuron j fired in the first DN update. From the hypothesis,
every Z neuron has a synaptic vector v = (p1, p2, ..., pc),
where pj = fj/n counting up to time t, where fi is the
observed frequency (occurrences) of Y neuron j firing, i =
1, 2, ..., c, and n is the total number of times the Z neuron
has fired. Consider two sub-cases: (2.a) the Z neuron should
fire according to the transition, and (2.b) the Z neuron should
not.

For sub-case (2.a) where the Z neuron should fire, we have

r(vb,b) = r(v,y) = v̇ · ẏ =
pj
‖v‖
· 1 =

pj
‖v‖

=
fj/n

‖v‖
=

fj
n‖v‖

> 0

because the Z neuron has been supervised at least the first
time for this transition and thus fj ≥ 1. We conclude that the
Z neuron guarantees to fire at 1 after its binary conditioning.
From Eq. (3), the j-th component of v is:

vj ←
n

n+ 1
· fj
n

+
1

n+ 1
· 1 · 1 =

fj + 1

n+ 1
. (12)

which is the correct count for the j-th component, and the
other components of v are:

vi ←
n

n+ 1
· fi
n

+
1

n+ 1
· 1 · 0 =

fi + 0

n+ 1
=

fi
n+ 1

, (13)

for all i 6= j, which is also the correct count for all
other components in v. The Z neuron does not need to be
supervised after the second DN update within (t, t + 1] but
still keeps firing. This is what we want to prove for property
3 for every firing Z neuron.

Next consider sub-case (2.b) where the Z neuron should
not fire. Similarly we have r(vb,b) = r(v, ẏ) =
fj/(n‖v‖) = 0, from the hypothesis that this Z neuron
fires correctly up to time t and thus we must have fj = 0.
Thus, they do not fire, change their weights, or advance their
ages. The Z neuron does not need to be supervised after the
second DN update within (t, t+ 1] but keeps not firing. This
is exactly what we want to prove for property 3 for every
non-firing Z neuron.

Combining the sub-cases (2.a) and (2.b), all the Z neurons
act perfectly and the properties 3 and 4 are true for the first
two DN updates. We have proved for Case 2, old Y input.

Therefore, the properties 1, 2, 3, 4 are true for first two
DN updates. If DN has time to continue to update before
time t+ 1, we see that we have always Case 2 for Y and Z
within the unit time and Y and Z retain their responses since
the input x retains its vector value. Thus, the properties 1,
2, 3, 4 are true for all DN updates within (t, t+ 1].

According to the principle of induction, we have proved
that the properties 1, 2, 3 and 4 are all true for all t.

D. Theorem 1: DN simulates FA incrementally, immediately,
and error-free

Using the above lemma, we are ready to prove:
Theorem 1 (Simulate any FA as scaffolding): The

general-purpose DP incrementally grows a GDN to
simulate any given FA M = (Q,Σ, q0, δ, A), error-free and
on the fly, if the Z area of the DN is supervised when
the DN observes each new state transition from the FA.
The learning for each state transition completes within two
network updates. There is no need for a second supervision
for the same state transition to reach error-free future
performance. The number of Y neurons in the DN is the
number of state transitions in the FA.

Proof: Run the given FA and the GDN at discrete time
t, t = 1, 2, .... Using the lemma above, each state transition
q

σ−→ q′ is observed by the DN via the mappings mx and
mz . Update the DN at least twice in each unit time. In DN,
if p = (z,x) is a new vector to Y , Y adds a new neuron.
Further, from the proof of the above lemma, we can see that
as soon as each transition in FA has been taught, the DN
has only Case 2 for the same transition in the future, which
means that no need for second supervision for any transition.
Also from the proof of the lemma, the number of Y neurons
corresponds to the number of state transitions in the FA.

If the training data set is finite and consistent (the same
(q, σ) must go to the unique next state q′), re-substitution
test (using the training set) corresponds to simulating an
FA using pattern codes. Theorem 1 states that for the DGN
any resubstitution test for consistent training data is always
immediate and error-free. Conventionally, this will mean that
the system over-fits data as its generalization will be poor.
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However, the DGN does not over-fit data as the following
Theorem 2 states, since the nature of its parameters is optimal
and the size of the parameter set is dynamic. In other words,
it is optimal for disjoint tests.

Definition 6 (Grounded DN): Suppose that the symbol-
to-vector mapping for the DN is consistent with the real
sensor of the a real-world agent (robot or animal), namely,
each symbol σ for FA is mapped to an sub-image x from the
real sensor, excluding the parts of the irrelevant background
in the scene. Then the DN that has been trained for the FA
is called grounded.

For a grounded DN, the SN is a human knowledge
abstraction of the real world. After training, a grounded DN
can run in the real physical world, at least in principle.
However, as we discussed above, the complexity of symbolic
representation for Σ and Q is exponential in the number of
concepts. Therefore, it is intractable for any SN to sufficiently
sample the real world since the number of symbols required
is too many for a realistic problem. The fact that there are
enough symbols to model the real world causes the symbolic
system to be brittle. All the probability variants of FA can
only adjust the boundaries between any two nearby symbols,
but the added probability cannot resolve the fundamental
problem of the lack of sufficient number of symbols.

E. Theorem 2: DN generalizes optimally while frozen

The next theorem states how the frozen GDN generalizes
for infinitely many sensory inputs.

Theorem 2 (DN generalization while frozen): Suppose
that after having experienced all the transitions of the FA,
from time t = t0 the GDN turns into a DN that

1) freezes: It does not generate new Y neurons and does
not update its adaptive part.

2) generalizes: It continues to generate responses by tak-
ing sensory inputs not restricted to the finite ones for
the FA.

Then the DN generates the Maximum Likelihood (ML)
action zn(t), recursively, for all integer t > t0:

n(t) = arg max
zi∈Z

h (ṗ(t− 1)|zi(t), z(t− 1)). (14)

where the probability density h(ṗ(t− 1)|zi(t), z(t− 1)) is
the probability density of the new last observation ṗ(t− 1),
with the parameter vector zi, conditioned on the last executed
action z(t−1), based on its experience gained from learning
the FA.

Proof: Reuse the proof of the lemma. Case 1 does not
apply since the DN does not generate new neurons. Only
Case 2 applies.

First consider Y . Define c Voronoi regions in X × Z
based on now frozen V = (v1,v2, ...,vc), where each Rj
consisting of ṗ vectors that are closer to v̇j than to other v̇i:

Rj = {ṗ | j = arg max
1≤i≤c

v̇i · ṗ}, j = 1, 2, ..., c.

Given observation ˙p(t− 1), V has two sets of parameters,
the X synaptic vectors and the Z synaptic vectors. They are
frozen.

According to the dependence of parameters in DN, first
consider consider c events for area Y : ṗ(t − 1) falls into
Ri, i = 1, 2, ..., c partitioned by the c Y vectors in V . The
conditional probability density g(ṗ(t−1)|v̇i, z(t−1)) is zero
if ṗ(t− 1) falls out of the Voronoi region of v̇i:

g(ṗ(t− 1)|vi, z(t− 1)) ={
gi(ṗ(t− 1)|vi, z(t− 1)) if ṗ(t− 1) ∈ Ri
0 otherwise (15)

where gi(ṗ(t − 1)|vi, z(t − 1)) is the probability density
within Ri. Note that the distribution of gi(ṗ(t− 1)|vi, z(t−
1)) within Ri is irrelevant as long as it integrates to 1.

Note that p(t− 1) = (x(t− 1), z(t− 1)). Given ṗ(t− 1),
the ML estimator for the binary vector yj ∈ Ec1 needs to
maximize g(ṗ(t − 1)|vi, z(t − 1)), which is equivalent to
finding

j = arg max
1≤i≤c

g(ṗ(t−1)|vi, z(t−1)) = arg max
1≤i≤c

v̇i·ṗ(t−1),

(16)
since finding the ML estimator j for Eq. (15) is equivalent
to finding the Voronoi region to which ṗ(t− 1) belongs to.
This is exactly what the Y area does, supposing k = 1 for
top-k competition.

Next, consider Z. The set of all possible binary-1 Y
vectors and the set of producible binary-p Z vectors have a
one-to-one correspondence: yj corresponds to zn if and only
if the single firing neuron in yj has non-zero connections
to all the firing neurons in the binary-p zn but not to
the non-firing neurons in zn. Namely, given the winner Y
neuron j, the corresponding z ∈ Z vector is deterministic.
Furthermore, for each Y neuron, there is only unique z
because of the definition of FA. Based on the definition of
probability density, we have:

g(ṗ(t− 1)|vj , z(t− 1)) = h(ṗ(t− 1)|zn(t), z(t− 1))

for every vj corresponding to zn(t). Thus, when the DN
generates y(t − 0.5) in (16) for ML estimate, its Z area
generates ML estimate zn(t) that maximizes (14).

F. Theorem 3: DN thinks optimally

There seems no more proper terms to describe the nature
of the DN operation other than “think.” The thinking process
by the current basic version of DN seems similar to, but not
exactly the same as, that of the brain. At least, the richness of
the mechanisms in DN that has demonstrated experimentally
to be close to that of the brain.

Theorem 3 (DN generalization while updating): Suppose
that after having experienced all the transitions of the FA,
from time t = t0 the GDN turns into a DN that

1) fixes its size: It does not generate new Y neurons
2) adapts: It updates its adaptive part N = (V,A).
3) generalizes: It continues to generate responses by tak-

ing sensory inputs not restricted to the finite ones for
the FA.
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Then the DN “thinks” (i.e., learns and generalizes) recur-
sively and optimally: For all integer t > t0, the DN re-
cursively generates the Maximum Likelihood (ML) response
yj(t− 0.5) ∈ Ec1: with

j = arg max
1≤i≤c

g(ṗ(t− 1)|v̇i(t− 1), z(t− 1)) (17)

where g(ṗ(t−1)|v̇i(t−1), z(t−1)) is the probability density,
conditioned on v̇i(t − 1), z(t − 1). And the Z has the pre-
response vector z(t) = (r1, r2, ..., rc(Z)), where rn, n =
1, 2, ..., c(Z), is the conditional probability for the n-th Z
neuron to fire:

rn = pnj(t) = Prob(j-th Y neuron fires at time t− 0.5

| n-th Z neuron fires at time t). (18)

The firing of each Z neuron has a freedom to choose
a binary conditioning method to map the above the pre-
response vector z ∈ Rc(Z) to the corresponding binary vector
z ∈ Bc(Z).

Proof: Again, reuse the proof of the lemma with the
synaptic vectors of Y to be V (t− 1) = (v1,v2, ...,vc) now
adapting.

First consider Y . Eq (16) is still true as this is what
DN does but V is now adapting. The probability density
in Eq. (15) is the currently estimated version based on past
experience but V is now adapting. Then, when k = 1 for top-
k Y area competition, the Y response vector yj(t−0.5) ∈ Ec1
with j determined by Eq. (16) gives Eq.(17). In other words,
the response vector from Y area is again the Maximum
Likelihood (ML) estimate from the incrementally estimated
probability density. The major difference between Eq.(16)
and Eq.(17) is that in the latter, the adaptive part of the DN
updates.

Next, consider Z. From the proof of the Lemma 1, the
synaptic weight between the j-th Y neuron and the n-th Z
neuron is

pnj = Prob(j-th Y neuron fires in the last DN update
| n-th Z neuron fires in the next DN update). (19)

The total pre-response for the n-th neuron is

rn = r(vn,y) = v̇n · ẏ = pnjyj = pnj1 = pnj ,

since the j-th neuron is the only firing Y neuron at this time.
The above two expressions give Eq. (18).

The last sentence in the theorem gives the freedom for
Z to choose a binary conditioning method but a binary
conditioning method is required in order to determine which
Z neurons fire and all other Z neurons do not. In the brain,
neural modulation (e.g., expected punishment, reward, or
novelty) discourages or encourages the recalled components
of z to fire.

The adaptive mode after learning the FA is autonomous
inside the DN. A major novelty of this theory of thinking is
that the structure inside the DN is fully emergent, regulated
by the DP (i.e., nature) and indirectly shaped (i.e., nurture)
by the external environment.

The neuronal resource of Y gradually re-distribute ac-
cording to the new observations in Y × X . It adds new
context-sensory experience and gradually weights down prior
experience. Over the entire life span, more often observed
experience and less often observed experience are propor-
tionally represented as the synaptic weights.

However, an adaptive DN does not simply repeat the
function of the FA it has learned. Its new thinking expe-
rience includes those that are not applicable to the FA. The
following cases are all allowed in principle:

(1) Thinking with a “closed eye”: A closed eye sets x = u
where u has 0.5 for all its components (all gray image).
The DN runs where Y responses mainly to z as x has little
“preference” in matching.

(2) Thinking with an “open eye”: In the sensory input x
is different from any prior input.

(3) Inconsistent experience: From the same (z,x) ≡
(q, σ), the next z′ ≡ q′ may be different at different times. FA
does not allow any such inconsistency. However, the incon-
sistencies allow occasional mistakes, update of knowledge
structures, and possible discovery of new knowledge.

The neuronal resources of Y gradually re-distribute ac-
cording to the new context-motor experience in Y ×Z. The
learning rate w2(nj) = 1/nj amounts to equally weighted
average for past experience by each neuron. Weng & Luciw
2009 [7] investigated amnesic average to give more weight
to recent experience.

In the developmental process of a DN, there is no need
for a rigid switch between FA and the real-world learning.

The binary conditioning is suited only when Z is super-
vised according to the FA to be simulated. As the “thinking”
of the DN is not necessarily correct, it is not desirable to use
the binary conditioning for Z neurons.

The thinking process by the current basic version of DN
seems similar to, but not exactly the same as, that of the
brain. At least, the richness of the mechanisms in DN is not
yet close to that of the brain. For example, the DN here does
not use neuromodulators so it does not prefer any signals
from receptors (e.g., sweet vs. bitter).

In conclusion, the above analysis and proofs have estab-
lished the three theorems.
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Abstract—Suppose that a developmental agent (animal or
machine) has c concepts to learn and each concept has v possible
values. The number of states is then vc, exponential in the
number of possible concepts. This computational complexity
is well known to be intractable. In artificial intelligence (AI),
human handcrafting of symbolic states has been adopted to
reduce the number of states, relying on human intuition about
the required states of a given task. This paradigm has resulted
in the well-known high brittleness because of the inability of
the human designer to check the validity of his state reduction
for the system to correctly go through an exponential number
of paths of state transitions (e.g., in graphic models). In this
reported work, we study how a Developmental Network (DN)
as an emergent and probabilistic finite automaton (FA) that
enables its states to emerge automatically — only those that
are experienced in its “life” — greatly reducing the number of
actual states. In order to avoid the requirement for the human
teacher to specify every state in online teaching (i.e., action in
DN), we allow the human teacher to give scores to evaluate the
displayed actions (i.e., reinforcement learning), modeling the
serotonin system for punishments and the dopamine system
for rewards. Due to the need of ground truth for performance
evaluation which is hard to come by in the real world, we
used a simulation environment described as a game setting, but
the methodology is applicable to a real-world developmental
robot and also our computational understanding how an animal
develops its skills.

I. INTRODUCTION

THE field of natural and artificial intelligence has two
schools: symbolic and emergent [1]. The symbolic

school has the advantage of intuitiveness in design, but faces
the well recognized high brittleness due to the exponential
complexity. The emergent school (also known as neural
networks) has the advantage of “analogy” but faces the lack
of a sufficient capability of abstraction. The recent brain-
inspired Developmental Network (DN) theory [2] has bridged
the gap between the two schools — the DN learns any
complex FA through the observation of the input-output pairs
while the FA operates. The FA can be considered the human
ontology (common sense knowledge). The learning of the
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FA by the DN is incremental, immediate, free of error for
not only the input-output sequences that it has observed but
also exponentially many input-output sequences that it has
not observed but state-equivalent [2]. Furthermore, the DN
is optimal in the sense of maximum likelihood when it faces
an infinite number of sensorimotor experiences of the real
physical world. However, the FA is an abstract model, not the
real physical or simulated world. Weng et al. 2013 [3] studied
DN reinforcement learning for face recognition and a three-
agent wandering setting, but the issue of exponential number
of possible states was not addressed in those two settings
since they only involved one concept (type or heading).

A complex (simulated) environment of EpigenBuddy [4]
(see Fig. 1) shows the demand of the exponential number
of states. The player should teach the NPC various skills to
accomplish various tasks in each game scene. For example, in
motor port of our game, we have ten concept zones, each has
eight neurons on average, then we totally have 810 conception
combinations which are more than one billion, beyond most
game engines’ processing capability. Five concept zones of
motor port are response for the action behavior: scene, NPC’s
orientation, eyes, upper arms and legs. The rest five concept
zones are response for art control. TABLE 1 gives those five
concepts as five columns and the rows give a few examples
from an intractable number of possible states.

TABLE I
STATES OF EPIGENBUDDY

State Scene Orientation Eyes Upper arms Legs
S11 Home Facing closet Searching Fumbling Walking
S12 Home Front Exciting Grab Map Stand
S21 Outdoor Facing hill Searching Fumbling Walking
S22 Outdoor Front Exciting Grab the stick Stand
S31 Tunnel Facing devil Searching Grab the sword Walking
S32 Tunnel Facing devil Track devil Fighting Running
S33 Tunnel Facing devil Shun devil Hold sword Stand

Take the state transition S11
σ2−→ S12 in scene home for

instance. In order to present S11 which means the NPC is
looking for the map, its concept combination is: in scene
home, its orientation concept zone emerges facing closet
concept, eyes concept zone emerges searching behavior,
upper arms concept zone presents fumbling behavior and
legs concept zone emerges walking straight forward. The
combination of these motor concept zones will trigger the
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Fig. 1. A simplified emergent FA of the EpigenBuddy game. The blue states are the main states of the game. The brown states encircled by dash line
indicate those possible states and transitions without experience and do not emerge in internal representation. The green one is the final state.

game’s cartoon engine to animate the NPC’s searching map
action. When the NPC receives the input σ2, which means the
map was detected, the NPC will transit to state S12. The main
concept zones responsible for the input are scene, object’s
location, object’s type, pain receptor and sweet receptor.
The input σ2 can be encoded by the concepts of home, the
map’s location, the maze map, no pain, and happy feeling.
TABLE II gives five inputs in our game as example.

TABLE II
INPUTS OF NPC

Input Scene Object’s Object’s Pain Sweet
Location Type Receptor Receptor

σ1 Home (0,0) Nothing No No
σ2 Home (Location) Map No Yes
σ3 Home (Location) Map No No
σ4 Outdoor (0,0) Nothing No No
σ5 Outdoor (Location) Stick No Yes

Training NPC only by supervised learning is inefficient
and boring. By contrast, reinforcement learning, which is
more convenient and efficient, is another common way of
learning in human society. Reinforcement learning enables
human beings to learn autonomously through trial-and-error
interactions in the dynamic environment. Figure 2 shows
the difference between these two sorts of learning in our
game. Supervised learning needs to choose several concepts
manually, step by step, even you may have done such
supervisions many times. However, reinforcement learning
just needs to evaluate the actions of the NPC, such as
rewarding by the dropping candy boxes from the sky. Using
dropping boxes is to add fun to the game, although it can be
rewarded or punished directly.

Two strategies were proposed to implement reinforce-
ment learning. One is to thoroughly search the behavior
space to find the optimal behaviors; the other is to use the
statistical and dynamic programming methods to evaluate
the consequence of all behaviors. But both two kinds of

(a) Supervised Learning (b) Reinforcement Learning

Fig. 2. Subfigure (a) is supervised learning. The player should choose the
concepts listed on the right side manually. Subfigure (b) is reinforcement
learning. The player teaches the NPC just through reward boxes dropped
from the sky. A reward or punishment that does hit the NPC is sensed by
the NPC. The user needs to control the NPC to catch the reward or to avoid
the punishment.

methods are symbolic models, they are vulnerable to the
exponentially grow of inner states. Reinforcement Learning
for neuromorphic networks that is capable of implementing
FA is a recent development [5] [2] which shows its capability
of dealing with such problem.

Neuromorphic network is a kind of DN that uses the
neuron-like unit. It simulates the brain’s neural modulation
system, which uses neurotransmitters secreted from the brain
to determine human being’s sensations such as like or dislike,
happy or depress. Plenty of biological and psychological
researches proved that human being has motivation system
[6] [7] controlled by neural modulation system. It is exactly
based on the motivation system that human beings possess
their capability of reinforcement learning. Therefore, an
augmented DN with modulation system named neuromorphic
DN was proposed.

In this paper, we performed an experiment in our digital
game platform to test the effectiveness of our network. We
constructed several NPCs based on neuromorphic DN with
different parameters and investigated their learning capability
and efficiency under different parameters. Learning from
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the experimental results, we came to conclusion that the
neuromorphic network highly improved the capability of
NPCs autonomous learning. The NPC made its optimal
decision based on its past experience.

The remainder of this paper is structured as follows. We
briefly introduce some related works in section II and DN in
section III. In section IV we introduce the updated version
of DN with modulation system and its algorithm. We show
the experimental results in section V to verify the property
of our model.

II. RELATED WORKS

Motivation systems are divided into two genres, sym-
bolic and neuromorphic. Symbolic systems are designed
handcrafted, where the meaning of the states is predefined.
Neuromorphic means the model uses neuron-like unitsand
the meaning of the states is emergent.

A. Symbolic value systems

Sutton & Barto 1981 [8] modeled rewards as positive
values that the system learns to predict. Ogmens work [9]
was based on Adaptive Resonance Theory (ART), which
took into account not only punishments and rewards, but
also the novelty in expected punishments and rewards, where
punishments, rewards and novelty are all based on a single
value. Almassy et al. 1998 [10], further refined in Sporns et
al. 1999 [11], modeled a robotic system where punishments
and rewards after interactive trials affect the later behaviors
of the robot. Each area in their system is a network, but
the features in each area are handcrafted, belonging to our
definition of symbolic representations. Kakade & Dayan [12]
proposed a dopamine model, which uses novelty and shaping
to drive exploration in reinforcement learning, although they
did not provide source of information for novelty nor a
computational model to measure the novelty. Oudeyer et al.
2007 [13] proposed that the objective functions for a robot
uses as a criterion to choose an action fall into three cat-
egories, (1) error maximization, (2) progress maximization,
and (3) similarity-based progress maximization. Huang &
Weng 2007 [14] proposed an intrinsic motivation system
that prioritizes three types of information with decreasing
urgency: (1) punishment, (2) reward and (3) novelty. As
punishment and rewards are typically sparse in time, novelty
can provide temporally dense motivation even during early
life. Krichmar 2008 [15] provided a survey that includes four
types of neural transmitters. Singh et al, 2010 [16] adopted an
evolutionary perspective and define a new reward framework
that captures evolutionary success across environments.

B. Neuromorphic value systems

Cox & Krichmar 2007 [17] proposed and experimented
with an architecture that integrates three types of neuro-
transmitters, 5-HT, DA and Ach (Acetylcholine) with Ach
for increased attention efforts. In their system, the sensory
system is emergent, but the behavior system is not. The
behavior system has three types of handcrafted behavior
states, random exploration, find, and flee. Krichmar 2008

[15] provided a survey which includes four types of neural
transmitters: 5HT, DA, Ach, and NE (Norepinephrine).

Weng et al. [18] [5] [3] updated the DN with modulation
system and used the new model in navigation and face
classification. In navigation, attractor and repulsor are placed
in the map to intrigue the releases of dopamine and serotonin.
In face classification, there are no supervisions but only
answers to the classification results. All the states in the
model are fully emergent.

III. DEVELOPMENTAL NETWORK

DN can abstract as well as symbolic networks such
as Bayesian Network [19], Markov Decision Process [20].
Because the DN takes not only the sensory port but also
motor port as the input.

A. Architecture

A basic DN has three areas, the sensory area X , the
internal (“brain”) area Y and the motor area Z. An example
of DN is shown in Fig. 3. The internal neurons in Y have
bi-directional connection with both X and Z.

The DP (Developmental Program) for DNs is not task-
specific as suggested for the “brain” in [21] (e.g., not
concept-specific or problem-specific). In contrast to a static
FA, the motor area Z of a DN can be directly observed
by the environment (e.g., by the teacher) and thus can be
calibrated through interactive teaching from the environ-
ment. The environmental concepts are learned incrementally
through interactions with the environments. For example, in
Fig. 3, the “Food” object makes the pixels 2, 4 and 6 activated
and all other green pixels remain normal. However, such
an image from the “Food” object is not known during the
programming time for the DP.

In principle, the X area can model any sensory modality
(e.g., vision, audition, and touch). The motor area Z serves
both input and output. When the environment supervises Z,
Z is the input to the network. Otherwise, Z gives an output
vector to drive effectors (muscles) which act on the real
world. The order of areas from low to high is: X,Y , and
Z. For example, X provides bottom-up input to Y , but Z
gives top-down input to Y .

B. DN algorithm

The DN algorithm is as follows. Input areas: X and Z.
Output areas: X and Z. The dimension and representation
of X and Z areas are hand designed based on the sensors
and effectors of the robotic agent or biologically regulated by
the genome. Y is skull-closed inside the “brain”, not directly
accessible by the external world after the birth.

1) At time t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector
r, where V contains all the synaptic weight vectors
and G stores all the neuronal ages. For example, use
the generative DN method discussed below.

2) At time t = 1, 2, ..., for each A in {X,Y, Z} repeat:
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(a) State transition of the EpigenBuddy.
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Fig. 3. (a) A DN has three parts: X zone response for the sensor, Z zone
response for motor, and Y zone correspond to the inner “brain” which has
bi-directional connections with both X and Z. In our game, X does not
use Y inputs. Pixel in yellow and circled by dash-line means it is activated.
Pixels grouped in dotted box are in the same concept zone. (b) An example
of a state and an input represented in Z motor and X motor. Pixels in red
indicate those concepts are activated.

a) Every area A performs mitosis-equivalent if it is
needed, using its bottom-up and top-down inputs
b and t, respectively.

b) Every area A computes its area function f , de-
scribed below,

(r′, N ′) = f(b, t, N)

where r′ is its response vector.
c) For every area A in {X,Y, Z}, A replaces: N ←

N ′ and r← r′.

C. Unified DN area function

It is desirable that each “brain” area uses the same area
function f , which can develop area specific representation
and generate area specific responses. Each area A has a
weight vector v = (vb,vt). Its pre-response value is:

r(vb,b,vt, t) = v̇ · ṗ (1)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized input
vector p = (ḃ, ṫ). The inner product measures the degree
of match between these two directions v̇ and ṗ, because
r(vb,b,vt, t) = cos(θ) where θ is the angle between two
unit vectors v̇ and ṗ. This enables a match between two
vectors of different magnitudes (e.g., a weight vector from
an object viewed indoor to match the same object when it is
viewed outdoor). The pre-action value ranges in [−1, 1].

To simulate lateral inhibitions (winner-take-all) within
each area A, top k winners fire. Considering k = 1, the
winner neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t). (2)

The area dynamically scales top-k winners so that the top-
k respond with values in (0, 1]. For k = 1, only the single
winner fires with response value yj = 1 (a pike) and all other
neurons in A do not fire. The response value yj approximates
the probability for ṗ to fall into the Voronoi region of its v̇j
where the “nearness” is r(vb,b,vt, t).

D. DN learning: Hebbian

All the connections in a DN are learned incrementally
based on Hebbian learning — cofiring of the pre-synaptic ac-
tivity ṗ and the post-synaptic activity y of the firing neuron.
If the pre-synaptic end and the post-synaptic end fire together,
the synaptic vector of the neuron has a synapse gain yṗ.
Other non-firing neurons do not modify their memory. When
a neuron j fires, its firing age is incremented nj ← nj + 1
and then its synapse vector is updated by a Hebbian-like
mechanism:

vj ← w1(nj)vj + w2(nj)yjṗ (3)

where w2(nj) is the learning rate depending on the firing age
(counts) nj of the neuron j and w1(nj) is the retention rate
with w1(nj) +w2(nj) ≡ 1. The simplest version of w2(nj)
is w2(nj) = 1/nj which corresponds to:

v
(i)
j =

i− 1

i
v
(i−1)
j +

1

i
1ṗ(ti), i = 1, 2, ..., nj ,

where ti is the firing time of the post-synaptic neuron j. The
above is the recursive way of computing the batch average:

v
(nj)
j =

1

nj

nj∑
i=1

ṗ(ti)

where is important for the proof of the optimality of DN in
[22].

IV. MODULATION SYSTEM

Psychological studies have proved rich evidence about
the existences of the motivational system [23] [7], which
is biologically closely related to modulatory systems [15].
Without motivation system, the brain is just a mapper from
input to output without the sense of what is like or dislike.
Lack of this motivation, the brain will lose its ability of
learning autonomously.
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The functions of neural modulation are implemented by
neurotransmitters (e.g., serotonin and dopamine). Instead
of carrying out detailed sensorimotor information, neuro-
transmitters often perform regulatory functions, modulating
the postsynaptic neurons (e.g., the cerebral cortex, and the
thalamus) so that they become more or less excitable or
make fewer or more connections. There are many kinds of
neurotransmitters. In our model we only model two of them,
which are dopamine and serotonin because their functions
are well disclosed.

Dopamine (DA) is associated with reward, which indicates
pleasure, wanting, etc. It is released from the substantial nigra
and the VTA. If an agent is expecting a reward, dopamine is
also released.

Serotonin (5-HT) is responses for pain, stress, threats
or punishment. Serotonin leads to behavior inhibition and
aversion to punishment. It originates in the raphe nuclei (RN)
of the brain stem.

A. Models with DA and 5-HT

To model DA and 5-HT, our model needs two more types
of neurons:

Dopaminergic neurons are those neurons that are sensitive
to dopamine. Firing of these neurons indicates pleasure.

Serotonergic neurons are those neurons that are sensitive
to serotonin. Firing of these neurons indicates stress.

The dopamine and serotonin appear to have effect on
neurons in its motor area. When a motor neuron receives
dopamine, it will be more likely to fire. While the neuron
receives serotonin, it will be less likely to fire. Therefore,
when an action gets the reward or avoids danger, the brain
will release dopamine, then this action will be encouraged
to react in the similar circumstance next time. If the action
gets punishment, then the possibility of reacting will become
smaller in the same scenario next time.

Link all sweet receptors with hypothalamus (HT) – repre-
sented as an area, which has the same number of neurons
as the number of sweet receptors. Every neuron in the
hypothalamus releases only dopamine.

Link all pain receptor with RN located in the brain stem
— represented as an area which has the same number of
neurons as the number of pain receptor. Every neuron in RN
releases only serotonin. Figure 4 presents the architecture of
updated DN with modulation system.

The X,Y, Z areas in updated DN are augmented. Sen-
sory area X = (Xu, Xp, Xs) consists of an unbiased
array Xu, a pain array Xp and a sweet array Xs. Y =
(Yu, Yp, Ys, YRN , YHT ) connects with X , RN and HT as
bottom-up and Z as top-down. The motor area is denoted
as Z = (z1, z2, . . . , zm), where m is the number of
muxels. Each zi has three neurons zi = (ziu, zip, zis),
where ziu, zip, zis are unbiased, pain, and sweet respectively,
i = 1, 2, . . . ,m. zip and zis are serotonin and dopamine
collaterals, associated with ziu, as illustrated by the Z area
in Fig. 4. In our game setting, an action consists of a number
of Z neurons to combine various concepts, so that we allow
several z neurons fire simultaneously.

Xu (88x64)

Xp (3x3)

Xs (3x3)

Yu (15x15)

Yp (3x3)

Z (30x3)

Ys (3x3)

YRN(3x3)

YVTA (3x3)

RN (3x3)

VTA (3x3)

Global

Global

Global

Global

Global

Global

Global

Global

Global

Global

Local (1x1)

Local (1x1)

Fig. 4. A DN with 5-HT and DA. The brown color denotes sero-
tonergic neurons. The yellow color denotes dopaminergic neurons. The
areas Yu, Yp, Ys, YRN , YHT should reside in the same cortical areas, each
represented by a different type of neurons, with different neuronal densities.

Whether the action i is released or not depends on not
only the response of ziu but also those of zip and zis. zip
and zis report how much negative value and positive value
are associated with the i-th action.

They form a triplet for each action zi. We use the following
intracellular rule for each motor triplet, assuming that this
models the effects of the serotonin and dopamine on the
internal mechanisms of a motor neuron.

Definition 1: (collateral Rule): Each motivated action is
a vector zi = (ziu, zip, zis) in Z = (z1, z2, . . . , zm), i =
1, 2, . . . ,m. The response of the action neuron is determined
by

ziu ← max{ziu(1 + zis − αzip), 0} (4)

with a large constant α > 1, where the parameter α
controls the sensitivity to pain. A large α means the agent
is more sensitive to pain. Another parameter controlling the
sensitivity is the threshold which will be explained in the
next section.

B. Operation

As an example of a motivational system, let us discuss how
such a motivated network realizes instrumental conditioning,
a well known animal model of reinforcement learning dis-
cussed in psychology [24].
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We only first consider a one-step delay in the following
model here. We use an arrow (→) to denote causal change
over time.

Suppose that an action za leads to pain but another action
zb leads to sweet. Using our notation, we have

(x(t1); z(t1)) = (xu(t1),o(t1),o(t1); za(t1))
→ (xu(t1 + 1),xp(t1 + 1),o(t1 + 1); za,p(t1 + 1))

and
(x(t2), z(t2)) = (xu(t2),o(t2),o(t2); zb(t2))

→ ((xu(t2 + 1),o(t2 + 1),xs(t2 + 1); zb,s(t2 + 1))

where p and s indicate pain and sweet and o denotes a zero
vector. The vectors za and zb represent two different actions
with different i’s for zi.

In our example above, let za = (1, 0, 0) and ab = (1, 0, 0),
but za,p = (1, 1, 0) and zb,s = (1, 0, 1).

Next, the agent runs into a similar scenario x′u ≈ xu. x′ =
(x′u,o,o) is matched by the same vector y as x = (xu,o,o).
Through the y vector response in Y , the motor area comes up
with two actions za,p = (1, 1, 0) and zb,s = (1, 0, 1). Using
our collateral rule, za is suppressed and zb is executed.

We note that the above discussion only spans one unit time
of the network update. However, the network can continue
to predict:

(x(t), z(t))→ (x(t+ 1), z(t+ 1))→ (x(t+ 2), z(t+ 2))

and so on. This seems a biologically plausible way of dealing
with delayed reward.

C. Action Procedure

A protocol of training and acting is as follows:
1) Learning Pain: (xu,o,o, za)→ (xu,xp,o, zu,p)
2) Learning sweet:(xu,o,o, zb)→ (xu,o,xs, zu,s)
3) Pain avoidance and pleasure seeking:

(xu,o,o;o)→ (xu,o,o; za∪b)→ (xu,xs,o; zb,s)

where za∪b ∈ Z denotes a response vector where both
za and zb are certain but with different collaterals.

V. EXPERIMENT

A. Experiment setting

We use the first scene, which is a 500x500 square map
in a hall, as the test platform. A pair of coordinate values
defines the position of one agent. The agent can move in
8 directions in the map at different speed controlled by step
size. There is an elf as the attractor, and a devil as the repulsor
in the map. Elf and devil are always wandering in the map
randomly. When these two kinds of agents run into the NPC,
they interact with the NPC then give feedbacks to the NPC’s
current action. The elf is always rewarding the NPC, while
the devil is always punishing the NPC.

There are some additional concepts we should use in
this game. For the sensory concept zones, we usually use
the distance and vigilance concepts to measure the danger.
Distance sensors receive the positions of devil and elf,
and calculate the distances to these two agents. Vigilance

represents the properties of the detected agents, danger or
sweet. Another important parameter of NPC representing the
sensitivities to danger and sweet is the distance thresholds to
detect danger and sweet (denoted by τdevil and τelf ). These
thresholds discriminate the NPC as blunt, sensitive to danger,
sensitive to desire, or sensitive to both. TABLE III lists all the
threshold settings. For the motor concept zones, the body and
leg concept zones are often used, which lead to three useful
actions: wandering, chasing and escaping.

TABLE III
SENSITIVITY THRESHOLDS TO DANGER AND SWEET

Threshold Danger Sweet
Blunt 50 50

Sensitive to Danger 200 50
Sensitive to Sweet 50 200
Sensitive to Both 200 200

NPC with modulation system also has pain and sweet
receptors. Once the NPC crosses the threshold when it is
approaching to the devil or elf, its pain or sweet receptor
will be triggered and the NPC starts to release serotonin
or dopamine. Although the influences of serotonin and
dopamine are complicated, we consider that the effect of the
serotonin overwhelms the effect of dopamine in our game
scenario, which means the NPC will in horror as long as its
distance to the devil is less than the threshold. TABLE IV
lists all status in different distances to the elf and devil.

TABLE IV
SITUATIONS OF NPC

Distance < τdevil > τdevil
< τelf In horror In desire
> τelf In leisure

B. Analysis

First of all, we investigate different kinds of NPCs with
or without modulation system, and show their different
behaviors. The NPCs with modulation system are learning
to get close to the friend and shun the foe quickly, which
can be learned from the distance distribution in Fig. 5.
All four NPCs with modulation system of different level:
blunt, sensitive to friend, sensitive to enemy, sensitive to
both have regular distance distributions, while the NPC
without modulation system (no brain) has a random distance
distribution to the friend and foe. In real game setting, the
distance lower than 10 to the devil means the NPC will lose
its mission and have to restart the game. This implicates the
learning efficiency of the NPC without modulation is very
low when the players are not teaching the NPC how to deal
with the current situation. This circumstances often occurs
in the complex game setting where the players cannot even
handle the large amount of states.

More specifically, we can learn from the chart that the
distances to the friend are below 100, smaller than the
distances to the foe, which are between 100 and 200. This
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Fig. 5. Distance distribution to friend and foe. Subfigure (a) shows the
trends of each kind of NPC’s distance to the foe. Subfigure (b) shows the
trends of the distance to friend.

shows the different effects of dopamine and serotonin. When
NPC approaches to the elf, it receives the positive feedback,
and begins to release dopamine, which encourages the NPC
to invoke the action rewarded. While the NPC approaches
the devil and crosses the line of threshold, it suffers from
punishment, and begins to release serotonin, which invokes
the action that decreases the danger.

A detailed study of four different modulation level modu-
lation is illustrated in Fig. 6. The blunt NPC’s thresholds to
danger and sweet are both small, this makes the devil can
stay close to the NPC. We can see from the upper left sub-
figure in Fig. 6, sometimes the distance to the devil stands
even around 50. Blunt NPC is also very easy to be got rid
of, for example, during the time interval 200 to 800, the elf
is manage to escape from the NPC’s chasing.

Shown from the upper right sub-figure of Fig. 6, the danger
sensitive NPC has an obvious warning line, which equals to
the threshold of danger. Since the NPC is insensitive to the
sweet, it will also ignore the elf. We can learn from the sub-
figure that the distance to the friend is also fluctuating. This
kind of NPC is very vigilant but hard to get reward from the
elf.

Opposite to the danger sensitive NPC, the sweet sensitive
NPC seldom allows the elf to flee away. The lower left in
Fig. 6 reports that the NPC is always catching up the elf and
keeping near to it.

The most interesting NPC is the one that sensitive to both
danger and sweet. It has the qualities of cautious and spirit
of adventure. It will not only keep itself in the safe belt, but
also try to give it a shot to chase the elf when in danger.
We can find out this phenomenon in lower right sub-figure
in Fig. 6 at about time 200.

Figure 7 shows the comparison of average distances of
different NPCs. Sensitive to friend NPC has the smallest
distance to friend, while the no brain NPC has the largest,
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Fig. 6. Distance trends of each kind of NPC. Upper left is the blunt
NPC. Upper right is the sensitive to danger NPC. Lower left is the
distance distribution of seneitive to sweet NPC. Lower right is the distance
distribution of sensitive to both NPC.
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the rest are in middle. It is worth noticing that the average
distances to enemy are equal in the case of the NPC, which
is sensitive to enemy and which is sensitive to both, because
their thresholds of enemy are equal. Their average distances
to enemy are both larger than the sensitive to friends. This
figure also shows the linear correlation between the threshold
and the distance.

Figure 8 visualizes the weights of neurons in Y area. Each
square represents a Y neuron, which has bottom-up and top-
down connections to the sensory area and motor area. The Y
neuron is activated when the bottom-up and top-down inputs
match the weights. Left of Fig. 8 is the bottom-up connection
weights of Y, the white spots indicate the weights are equal
to 1, black ones are equal to 0, and the gray means between
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(a) Bottom-up connection weights (b) Top-down connection weights

Fig. 8. Connection weights of the Y area. Each square represents a
Y neuron’s connection weight. Left sub-figure represents the connection
weights of bottom-up (from X area). The right sub-figure represents the
connection weights of top-down (from Z area).

0 and 1. The right of Fig. 8 is the top-down connections.
The last two neurons are not used in our experiment and are
all black.

(a) Serotonin Level (b) Dopamine Level

Fig. 9. Neurotransmitter effects on motor area. The left sub-figure shows
the weights of YRN to motor area, represents the effect of serotonin. The
right sub-figure shows the weights of YHT to motor area, represents the
effect of dopamine.

Figure 9 reflects the effects of neurotransmitters. The left
of the diagram is the effect of the serotonin and the right is
the effect of dopamine on motor area. Same patterns but
different intensities of the weights can be spotted in the
Fig. 9.

VI. CONCLUSIONS

Developmental agents for games seem to open a new av-
enue for future digital games, with applications in entertain-
ment, education, training, and simulations for agent research.
In this paper, we showed that such developmental agents,
with fully emergent internal representations (in the network
other than X and Z areas) can accommodate a mixture of
user-initiated motor-supervised learnings and reinforcement
learnings. This new capability for digital games increases
the playing value and reduce the human player’s teaching
load. However, occasional motor-supervised learnings are
still allowed for a quick acquisition of user-desired behaviors.
This new type of developmental agents allow sensory-motor
skills learned in earlier playing to be automatically applied
to later learning and playing. The future work is to fully
implement the game and test it in commercial settings.
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Abstract---As postulated by myself in previous articles, 

transgenic research has empirically demonstrated that particular 

proteins are central in the ontology of consciousness.  The research 

results support the contention that consciousness is physical.  An 

explanation is given of the process in which consciousness takes 

place. 
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I. EMPIRICAL EVIDENCE 
In a previous article [Brooks, 2011-2012, p. 233] [1], I 

stated that particular proteins constitute consciousness and I 
provided a summary of several empirical research results 
which demonstrate strong support for the concept.  Proteins 
have extremely diverse properties and the “consciousness 
proteins” appear to literally have the character of 
consciousness.  The purpose of the present article is to offer 
further ideational support for the concept.  
     Within the last eight years, empirical research has 
serendipetously but most importantly accomplished a 
breakthrough in demonstrating and in understanding  the 
mechanism of consciousness.   The following is a brief 
summary of the research:  Mice are normally dichromatic, 
having vision only for the colors of red and green.   By 
transplanting a human gene for the color blue into mice, both 
Onishi et al, [2005, pp. 1145-56] [2] and Jacobs et al, [2007, pp. 
1723-5][3] have independently enabled the mice to be 
trichromatic.  The research has demonstrated that the mouse 
brains were able to integrate the new information in making 
color discriminations.  The color information is a form of 
consciousness which is newly present within the mice. 
     In a more recent transgenic experiment, Carey et al [2010, 
pp. 66-71] [4] provided for the novel consciousness of a 
specific scent in a mosquito.  This was accomplished by 
transplanting into the mosquito a gene for an odor receptor 
molecule which the mosquito lacked due to a mutation.  The 
gene which coded for the scent was obtained from a fruit fly.  
In other transgenic experiments, Park et al, [2008, pp. 0156-
0170] [5] allowed a mouse-like animal called a mole-rat, which 
genetically lacked the capacity for feeling pain, to be aware of 
the quality.  Also, Roska [2010, p. 11] [6] led a group which 
accomplished a genetic transfer into mice, which were blind 
from a genetic disease, to recover their vision in yellow color.    
     Despite the empirical research, it is difficult for the 
uninitiated to understand how it is possible for a protein, 

which is a physical entity, to be consciousness.  
Consciousness, is almost always regarded by theorists to be 
non-physical or to have a non-physical component (dualism).     
     I offer that a deeply revised theoretical understanding of 
consciousness includes the realization that certain physical 
entities [“consciousness proteins”] have the characters of 
qualities; that qualities are consciousness from the moment of 
birth; and that consciousness is experience which cannot be 
observed.  Proteins have been genetically transferred to enable 
novel forms of consciousness. The variability of proteins, 
including their susceptibility to alteration by nerve cell 
impulses, makes them excellent candidates for the constituents 
of qualities and therefore for consciousness.  I postulate that 
the qualities of light and sound, as well as the experiences of 
the other qualities, are the unique ontologies of physical 
entities. 

Consciousness does not appear on the surface to be  
physical largely because it is completely unobservable.  It is 
entirely natural for something which cannot be observed in 
any manner to be regarded as immaterial.  Unlike ordinary 
physical objects, consciousness is unique in that it can neither 
be seen nor touched.  Consider ghosts and spirits or the soul.  
If, for the moment, I am allowed the assumption that 
consciousness is indeed physical, one is nevertheless 
prompted to ask, “How could consciousness possibly be 
physical?  How does it come about or take place?”   
     The answer, very briefly with a further explanation to 
follow, is that “consciousness proteins” are the central 
elements of qualities.  Further, the qualities are combined as 
phenomenal objects and are projected or referred to the 
environment [Brooks, 2011-2012, p. 223 ff] [7].  Prior to the 
explication, it will be well to clarify the meaning of “qualities” 
and to describe the needed Kantian concept of the 
“noumenon” as well as the meaning of “projection.” 

II. QUALITIES 
I believe John Locke (1632-1704) correctly described the 

sources of the contents of the mind.  He maintained [1975, p. 
105] [8]  that all ideas come from “SENSATION” or 
“REFLECTION.”  In regard to sensation, he believed that the 
mind was blank at birth and that items from the external world 
entered the mind through the senses.  Locke wrote [1975, p. 
106[9]; Brooks, 2003, p. 142] [10]:  
 

© BMI Press 2013 35



“Whence [come]...all the materials of Reason 
and Knowledge?  To this I answer, in one word, 
From Experience [consciousness]:  In that, all 
our Knowledge is founded....”   

 
Locke applied this statement all inclusively, to external 

objects as well as to our knowledge of the “internal Operations 
of our Minds.”  The senses supplied the building blocks for 
the mind.  He was certainly indicating that he regarded 
sensations, which he called “qualities”, to comprise primary 
elemental forms of mental processes.  The qualities are the 
characterizing central elements of the sensations each of 
which is subjective and unique, entirely different from each 
other and unlike anything else in nature.   

“REFLECTION” was viewed by Locke as a process in 
addition to the generation of qualities.  It was an entirely 
internal process in which the mind obtains ideas “by reflecting 
on its own Operations within it self (sic).”   We would consider 
reflection to be a process involving recombination—the mind 
combines and recombines the arrangement of the original ideas 
or “building blocks” to develop new structures (phenomenal 
objects, “representations”) which can then be built 
hierarchically into still larger structures [Brooks, 1995] [11].  
According to Locke, sensations are able to enter the mind from 
“Powers” (energies) which external objects convey to one’s 
sense receptor organelles.  Lamps convey light energy and 
bells convey sound energy.  Thus, the lamps and bells are 
perceptible to one only by means of the conveyed energies.  
The same principle applies to all of the senses whether 
exteroceptive or interoceptive.  

III. NOUMENAL OBJECTS (GK. NOUS, MIND) 
There can be little doubt that Kant, who was born twenty 

years after the death of Locke, was very familiar with Locke’s 
writings.  Kant’s view of objects seems to have followed 
logically from the statements of his predecessor.  Kant’s idea 
of noumena, therefore, is quite understandable as based upon 
the physical and physiological facts as implied by Locke.  
Locke wrote that, “...Qualities...in truth are nothing in the 
Objects themselves, ... [except] Powers to produce sensations 
in us...” [Brooks, 2003, p. 40] [12].  Rather than using the term, 
“Powers”, modern wording might substitute “energies.”  The 
statement by Locke was powerful.  Even today his insight is 
counterintuitive and difficult for many people to accept.  
About two hundred years after Locke, the physiologist, 
Johannes Muller, (1801-1858) made a statement which has a 
similar meaning and which is regarded as seminal.  It is 
paraphrased in a textbook of general psychology [Gleitman, 
1981] [13] as stating that:  “[T]he differences in experienced 
quality [sensation] are caused not by the differences in the 
stimuli but by the different nervous structures which these 
stimuli excite, most likely in centers higher up in the brain.” 

In regard to noumenal objects Kant is interpreted [1965, p. 
74] [14] as saying, “What objects may be in 
themselves...remains completely unknown to us.”  His 
writings indicate that the energies, which stimulate our senses, 
arise from objects which are entirely “real” even though our 
perceptions of them are obtained only from the energies which 

the objects emit or reflect.       
     Brooks [2003, p. 42] [15] notes:   
 

Despite our subjective impression to the contrary, 
one has to think that Kant was correct in stating 
that what is in the environment is, in a sense, 
‘unknowable.’...[A]s we understand him, he 
meant this in an ultimate sense; not that we 
cannot know the tree or rock but … we can 
know them only as our senses detect them.”  

 
It is well accepted among theorists, that all qualities are 

present in the mind rather than in or on external objects.   The 
objects are noumenal.  That is, limited to themselves they have 
to be literally invisible, inaudible, intangible and so on.  We 
can become conscious of objects only as the qualities they 
engender in our minds.  The perceptions of objects consist of 
qualities. 

Bertrand Russell’s understanding was fairly similar to that 
of Kant.  Russell observed [1927, p. 264] [16], “...we know 
nothing of the intrinsic quality of the physical world....”   Also 
[1997] [17], “...common sense leaves us completely in the dark 
as to the true intrinsic nature of physical objects....”   

Brooks indicated in 1993 [pp. 5-6] [18] and later stated in 
[2003, p. 10] [19]: 

 
We normally assume the ‘real’ appearance of an 
object to be just as we see it, yet ... experience 
tells us that in an important sense this is not so.  
For example, under an ordinary microscope the 
appearance of an object can be radically 
different from what it is to the naked eye.  With 
the advent of the electron microscope, the 
change in the ‘reality’ becomes even more 
radical and the atomic and subatomic levels are 
almost beyond the consideration of appearance. 

 
I consider the concept of noumena to be extremely 

important if not essential to the understanding of 
consciousness.  Providing credibility to the concept, it is well 
known that even in so-called “solid” materials the atoms are 
far apart and the materials are mostly empty space.  Searle 
[2004, pp 46-47] [20] makes a statement similar to those of 
[Brooks, 1993 [21]; 2003, p. 10 [22]]  even though in later 
statements in the same writing he appears to remain 
unconvinced since he defends the position of “direct realism” 
[2004, p. 76] [23]:  
  

. . . the world consists almost entirely of 
physical particles and everything else is in some 
way an illusion (like colors and tastes) or a 
surface feature (like solidity and liquidity) that 
can be reduced to the behavior of physical 
particles.  At the level of molecular structure the 
table is not really solid.  

Searle [2004, p. 261] [24] also expresses the concept that 
objects do not exist as we perceive them: 
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The scientific account of perception shows how 
the peripheral nerve endings are stimulated by 
objects in the world, and how the stimulation of 
the nerve endings eventually sends signals into 
the central nervous system and finally to the 
brain, and how in the brain the whole set of 
neurobiological processes causes a perceptual 
experience.  But the only actual object of our 
awareness is that experience in the brain.  There 
is no way we could ever have direct access to the 
external world.  All we can ever have direct 
access to is the effect that the external world has 
on our nervous system 

  
I do not consider this view of objects, a view originally 

expressed by Kant, to mean that objects are immaterial.  The 
energies received from the environment which stimulate our 
senses and result in qualities, are real energies and arise from 
real objects.  Thus noumenal objects are entirely real even 
though we do not perceive them as they exist in the 
environment “within themselves.”  Science is ignorant of their 
intrinsic natures.    

IV. PROJECTION 
A third concept, which is of the utmost importance for the 

understanding of consciousness, is that of projection.  
Following the reception of external energies and their 
processing into objects within the mind, how does it happen 
that we experience objects to be in the environment?  William 
James [1904] [25] considered the question to pose a paradox 
and asked essentially, “How can objects be in two places at 
once?”   In what amounts to a discussion of projection, James 
noted: 
 

The whole philosophy of perception from 
Democritus’ time downwards has been just one 
long wrangle over the paradox that what is 
evidently one reality should be in two places at 
once, both in outer space and in a person’s mind.  

 
We can now resolve the paradox:  The phenomenal objects 

are projected (referred) to the external environment [Brooks, 
2011-2012, p. 223] [26] .  I use the word “projection” in the 
sense in which it is defined in Webster’s dictionary as 
meaning a “send[ing] forth in one’s thoughts or imagination.”  
Phenomenal objects are “misunderstood” by the brain as 
being located at the points in the external environment from 
which the originating energies arise—from the noumenal 
objects.  Thus the locations of the noumenal objects and the 
projected phenomenal objects are the same.  Our 
consciousness is projected to a lamp and we interpret the lamp 
as being the object of which we are conscious.  But, to be 
exact (as well as counterintuitive), we are not conscious of the 
lamp as it exists in nature.  The lamp is imperceptible without 
intervening effects.  We know it only indirectly through 
energies it conveys and through nerve cell impulses.  We 

perceive the lamp as being physical.  But we do not see the 
lamp itself.  That which we see is a “representation” of sorts.  
The “representation” is composed of “consciousness 
proteins.”  (Think of the proteins, as nerve cell impulses or 
simply as “physical entities” if that is more comprehensible.)   
The perceptions of all objects reside in our brains.  The 
phenomenal objects are understood (projected) as being 
located in the environment. 

One is justified in asking, “If I stub my toe on a rock, is not 
the pain and swelling in my toe?”  The message of the pain is 
transmitted to the brain via nerve cells while the swelling is 
perceived via one’s eyes.  Both the pain and the swelling are 
real even though both the rock and the toe are noumenal.  
Note that the brain has no mechanism for becoming conscious 
of perceptual objects in their actual locations which are within 
the brain itself.     

The following statement by psychologist Piaget [1963 [27]; 
Brooks, 2003, p. 43 [28]; 2007-8, p. 365 ] [29] mentions:  
 

Infants have to learn from experience that an 
area outside themselves exists and that the 
objects which they perceive are located in that 
area.  One way infants corroborate the location 
of objects they perceive is by touching them. 
 

That referral or projection is a learned function is 
fascinatingly evidenced by babies as they attempt to relate to 
themselves in a mirror as a separate person.  Animals make 
the same mistake. 

Phenomenal objects are regularly projected (referred) to 
the environment but there is no projection of anything 
physical.  The projection is purely a psychological event and 
occurs automatically without awareness of the process or of 
conscious volition.  The objects are simply understood in the 
mind as if they are located in the environment [Brooks, 1993, 
pp. 17-19 [30]; 2007-2008, p. 361-365 [31]; 2010-2011, p. 226 
[32]].   

The following is excerpted and paraphrased from [Brooks, 
2007-2008, p. 363 [33]]:  While almost all theories of 
consciousness fail to comment about projection and some 
statements which do contain comment express objection, it is 
interesting that a conception of projection, very similar to the 
one I expound in the present writing, was expressed in a book 
by Whitehead in 1925 [p. 54] [34]: 
   
           The mind in apprehending also experiences 

sensations which, properly speaking, are 
projected by the mind alone.  These sensations 
are projected by the mind so as to clothe 
appropriate bodies in external nature.  Thus the 
bodies are perceived as with the qualities which 
in reality do not belong to them, qualities which 
in fact are purely offsprings of the mind. 

 
It is unfortunate that Whitehead’s observation received too 

little theoretical elaboration or general reception.  Ruch [1950] 
[35], in a textbook of physiology, also describes a concept of 
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projection very similar to mine as follows:   
 
All our sensations are aroused directly in the 
brain, but in no case are we conscious of this.  
On the contrary, our sensations are projected 
either to the exterior of the body or to some 
peripheral organ in the body, i.e. to the place 
where experience has taught us that the acting 
stimulus arises.  The exteroceptive sensations 
are therefore projected exterior to our body.  
Sound seems to come from the bell, light from 
the lamp, etc….  An important aspect of 
sensation which deserves to be called the law of 
projection is that stimulation of a sensory 
system at any point central to the sense organs 
gives rise to a sensation which is projected to 
the periphery and not to the point of stimulation. 

 
Libet [1996] [36] mentions an equivalent to the central 

concept of projection in disagreement with Velmans’ 
“reflexive” theory of consciousness [1993, p. 94] [37]: 

 
It seems to me that the reflexive model is simply 
a special case of what’s going on all the time—
subjective referral.  If you stimulate the 
somatosensory cortex electrically, you don’t feel 
anything in the brain or head at all, you feel it 
out in your hand or wherever the representation 
is of that cortical site.  That applies to all 
sensibilities.  There is referral away from the 
brain to the body parts; there is referral out into 
space, if the stimulus appears to be coming from 
there. 

 
That the normal interpretation or understanding of objects 

as being located at the source of incoming energies is a 
complex process and should not simply be taken for granted, 
is indicated by the fact that it does not always occur correctly.  
In fact, the process of projection is more convincingly 
exemplified when the projection to the source is incorrect than 
when the projection is accurate.  A very common example of 
incorrect referral or projection is that which occurs when one 
looks in a mirror.  We are normally so well acquainted with 
mirror images that we take them for granted and know fully 
well where the source of the image is located.  However, when 
a second mirror is needed, as when looking at the back of 
one’s head, the reversal of direction tends to make unfamiliar 
movements very confusing.  Other common examples of 
incorrect localization include the sound from a ventriloquist’s 
dummy, mirages, echoes, visual “floaters”, as well as movies 
and television.  In the latter two the sound emanates from 
speakers at the sides of the screens and not from the mouths of 
the actors.  In another example, we often  hear a sound, 
perhaps of a voice, and look around to see where to refer the 
sound.  An example, which has been well studied by 
psychologists, is that much of what one tastes and locates in 
one’s mouth, is actually smell, and its source is therefore in 

the nose:  “The odor of the substance clearly helps [the 
taste]...as is attested by the common experience that food lacks 
taste when one has a stuffy head cold” [Vander, Sherman, and 
Luciano, 1975, p. 531] [38].  

 
In the “virtual reality” arrangements used today for 

training military personnel, one not only perceives objects as 
being at the supposed origins of the emitted energies but one 
places oneself in the midst of the scene depicted on a screen.  
These are all examples in which the mind/brain “mistakenly” 
interprets stimulated sensory qualities as being located in the 
environment even though the actual percept is within the brain.  
Hallucinations and dreams also involve projection.   It seems 
to me that evidence for projection is so commonplace that one 
hardly needs experimental proof of its occurrence.   

V. ONTOLOGY OF CONSCIOUSNESS 
The function of projection, in completing the process of 

perception, provides an answer to James’ “paradox.”  Objects 
of one’s consciousness are actually phenomenal objects which 
have been projected.  The colors, shapes, sizes, etc.,(qualities) 
of which the phenomenal objects consist, are constructions 
created in the brain and appear to be the real objects.  The real, 
noumenal, objects are the sources of the initial stimulations.  
This status applies to all of subjective “reality”, to all objects 
of perception, whether they are located in the environment 
external to the body or in the body itself.  Because qualitized 
objects are merely understood to be in the environment, the 
objects, which are “clothed” in qualities, are illusional in part.  
It is the noumenal objects which are real and present in the 
environment.  The objects which we perceive to be in the 
environment are projected complexes of qualities  [Brooks, 
2010-2011, p. 226] [39].  We can state that technically “the tree 
is not green and the sky is not blue.”  The colors are projected 
qualities which are located in the mind/brain.  The qualities 
consist of “consciousness proteins” as demonstrated at least in 
several empirical cases.  The proteins [Brooks, 2009-2010 [40], 
172; 2010-2011, p. 233] [41] are the central elements of 
consciousness. 

REFERENCES 
[1]   E. M. Brooks, (2011-2012).  “Ontology theory    
       of consciousness,” in Imagination, Cognition and     
       Personality, 31 (3), pp. 217-236.                  
[2]   A. Onishi et al, (2005).  “Generation of knock-in  
       mice carrying third cones with spectral  
       sensitivity different from S and L cones.”  In  Zoological  
       Science, 22 (10), pp. 1145-56, Oct. 
[3]  G. H. Jacobs, G. Williams, H. Cahill, J.  
       Nathans, (2007),  “Emergence of novel color  
       vision in mice engineered to express a human  
       cone pigment,” in Science, March 23, 2007, Vol.  
       315, pp. 1723-5. 

38



 [4]  A. F. Carey, G. Wang, C. Su, L. S.  Zweibel, J.      
       R. Carlson, (2010). “Odorant reception in the  
       malaria mosquito Anopheles gambiae,” in Nature,  
       464, March 4.   
[5]   T. J. Park et al, (2008). “Selective inflammatory  
       pain insensitivity in the African Naked Mole- 
       Rat,” in PLoS Biology, 6(1). 
[6]   B. Roska, (2010). “Gene therapy helps blind  
       mice see,” in Science News, 178 (2), Jul. 17. 
[7]   E. M. Brooks, (2011-2012).  “Ontology theory    
       of Consciousness,” in Imagination, Cognition and     
       Personality, 31 (3), p. 223 ff.                  
[8]  J.Locke, (1975). An Essay Concerning Human  
       Understanding. Peter H. Nidditch (Ed.), Oxford:  
       Clarendon Press, ch. VII, sec. 10, p. 105.  
[9]  J.Locke, (1975). An Essay Concerning Human  
       Understanding. Peter H. Nidditch (Ed.), Oxford:  
       Clarendon Press, ch. VII, sec. 10, p. 106. 
[10] E. M. Brooks, (2003). Journey into the Realm of  
       Consciousness: How the brain produces the mind.   
       Bloomington, IN: First Books, Imprint Author House. 
[11] E. M. Brooks, (1995). “Consciousness and mind: the  
       answer to the hard problem.” Unpublished     
[12]  E. M. Brooks, (2003). Journey into the Realm of  
       Consciousness: How the brain produces the mind.   
       Bloomington, IN: First Books, Imprint Author House. 
[13]  H. Gleitman, (1981). Psychology. New York:  W. W.  
       Norton & Company. p. 288.  
[14] Kant, Immanuel, (1965). Critique of Pure Reason.  
       Trans. Smith, Norman, K. Reprinted New York: St.  
       Martin Press. 
[15] E. M. Brooks, (2003). Journey into the Realm of  
       Consciousness: How the brain produces the mind.   
       Bloomington, IN: First Books, Imprint Author House. 
       p. 42. 
[16] B. Russell, (1927), The Analysis of Matter, New York:  
       Harcourt, Brace & Company, Inc., p. 264.          
[17] B. Russell, (1997), The Analysis of Matter, New York:  
       Harcourt, Brace & Company, Inc.          
[18] E. M. Brooks, (1993). “Toward an understanding of   
       perception, consciousness, and meaning.”  Unpublished.   
[19] E. M. Brooks, (2003). Journey into the Realm of  
       Consciousness: How the brain produces the mind.   
       Bloomington, IN: First Books, Imprint Author House. 
       p. 10. 
[20]  J. Searle, (2004).  Mind: A Brief Introduction. Oxford:   
       Oxford University Press.  
[21] E. M. Brooks, (1993). “Toward an understanding of   
       perception, consciousness, and meaning.”  Unpublished.   
[22]  E. M. Brooks, (2003). Journey into the Realm of  
       Consciousness: How the brain produces the mind.   
       Bloomington, IN: First Books, Imprint Author House. 
       p. 10. 
[23]  E. M. Brooks, (2004-2005)  “Multiplicity of  
       consciousness,”  in Imagination, Cognition and     
       Personality, 24 (3), p. 76. 
[24]  J. Searle, (2004).  Mind: A Brief Introduction. Oxford:   

       Oxford University Press.  
[25]  W. James, (1950). The Principles of Psychology,  New  
       York, Dover Publications.  (First published 1890 by  
       Henry Holt and company, 29(5), 5230). 
[26]   E. M. Brooks, (2011-2012).  “Ontology theory    
       of consciousness,” in Imagination, Cognition and     
       Personality, 31 (3), p. 223 
[27]   J. Piaget, (1963).  The Origins of Intelligence in   
       children, New York, W. W. Norton Company, Inc.  
[28] E. M. Brooks, (2003). Journey into the Realm of  
       Consciousness: How the brain produces the mind.   
       Bloomington, IN: First Books, Imprint Author House. 
[29]  E. M. Brooks, (2007-8). “The perceptual 
       and Personality, 27 (4), pp. 361-365. 
[30]  E. M. Brooks, (1993). “Toward an understanding of   
       perception, consciousness, and meaning.”  Unpublished.   
[31]  E. M. Brooks, (2007-8). “The perceptual arc: Unraveling  
       the mysteries of perception,” in Imagination, Cognition 
[32] E. M. Brooks, (2010-11). ‘The basis of epistemology:   
       How the brain understands and develops meaning,’ in  
       Imagination, Cognition and Personality, 30 (2), p. 226.  
[33]  E. M. Brooks, (2007-8). “The perceptual arc: Unraveling  
       the mysteries of perception,” in Imagination, Cognition  
       and Personality, 27 (4), p. 363. 
[34]  A. N. Whitehead, (1925). Science and the Modern  
       World.  New York: The Free Press, a division of the  
       Macmillan Publishing Col, Inc 
[35]  J. F. Ruch, (1955). A Textbook of Physiology.   
       Seventeenth Ed.,  J. F. Fulton, editor. Philadelphia: W. B.  
       Saunders Company. 
[36]  B. Libet, (1996). Solutions to the Hard Problem of  
       Consciousness. in Journal of Consciousness Studies. 3  
       (1), p. 34. 
[37]  M. Velmans, (1993). “A reflexive science of  
       consciousness, Experimental and theoretical studies of  
       consciousness,” pub. by Ciba, Chichester: Wiley, 174,  
       pp.81-99.   
[38]  A. Vander, J.  Sherman, D. Luciano, (1975). Human  
       Physiology—The mechanisms of body function. New  
      York: McGraw-Hill Inc., 2nd Ed. p. 531. 
[39]  E. M. Brooks, (2010-11). ‘The basis of epistemology:   
       How the brain understands and develops meaning,’ in  
       Imagination, Cognition and Personality, 30 (2), p. 226. 
[40]  E. M. Brooks, (2009-2010). “Beyond the identity  
       theory,” in Imagination, Cognition and Personality, 29(2),  
       p. 172. 
[41]  E. M. Brooks, (2010-11). ‘The basis of epistemology:   
       How the brain understands and develops meaning,’ in  
       Imagination, Cognition and Personality, 30 (2), p. 233. 

39



Motor neuron splitting for efficient learning in
Where-What Network

Zejia Zheng, Kui Qian, Juyang Weng, and Zhengyou Zhang

Abstract—Biologically-inspired developmental Where-What
Network gives an elegant approach to the general visual
attention-recognition (AR) problem. In their work [1], Luciw and
Weng build the visuomotor network for detecting and recognizing
objects from complex backgrounds, modeling the dorsal and
ventral streams of the biological visual cortex.

Although WWN models the visual cortex to model the at-
tention and segmentation process in visual cortex, the effects of
neuromodulator, such as serotonin and dopamine, on individual
neurons in the brain are challenging to understand and model,
largely because each neuron in an emergent network does
not have a static, task-specific meaning. Weng and coworkers
modeled the effects of serotonin and dopamine on motor neurons
and inner brain neurons in emergent networks as discouragement
and encouragement of the firing of neurons, as a statistical effect
on the related network behaviors[2].

Directly combining the motivational system with where-what
network is plausible but not computationally efficient. The
motivational system makes educated guesses for a given fore-
ground object. Where-What Network, on the other hand, requires
training in both location motors and type motors. Combining
these the two motors will generate a large number of confusing
outcomes that takes the network forever to be trained even for
a moderate resolution in the location motors.

In this work, we integrate the motivational system with the
where-what network based on a coarse to fine learning strategy.
Instead of being explicitly informed about the location and type
information of the foreground object, which is used in supervised
WWN learning, and guessing the correct location and type until
correct, which is used in motivated developmental network, the
network is rewarded to learn to refine its output on a gradual
basis.

The network is first trained to learn rough locations of the
foreground object. During the first epoch we train only four
different locations: upper left, upper right, lower left and lower
right. The network architecture then splits its motor neurons
into four exactly same neurons to learn to recognize in higher
precision. The new neurons copies the weights and connections
of its parent neuron. The four new motor neurons represents
four sub-locations of the parent neuron. The network then
goes through training process once again to refine those copied
neurons. More splitting and training would take place if higher
precision is required.

This approach reduces training time thus allows us to train
the network efficiently using real time experiment platforms.
Experimentally, the recognition rate of the new network is
comparable to the original supervised learning network. This
approach is also proved to be efficient when applied to type
motor.
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Abstract—We will discuss evidence from neuroscience against 
the hypothesis that depression is cognitively adaptive.  Andrews 
and Thomson propose that depression allows for more analytical 
and focused thinking about our most serious personal problems.  
It is thus adaptive in a way analogous to disease responses such as 
fever, which gives an advantage to white cells over pathogens.  It 
is unpleasant but advantageous.  Evidence from neuroscience, 
however, cast doubt on this hypothesis.  Some of the key areas 
involved in the neuroanatomical circuit of depression, such as the 
prefrontal cortex (reduced volume in the left hemisphere), the 
dorsal anterior cingulate cortex (decreased activity) and the 
cortical hippocampal path (disrupted communication), when 
adversely affected, lead instead to impaired memory and 
concentration. 
 
      Keywords- depression; adaptive; neuroscience; rumination; 
memory 

 
The analytical rumination hypothesis, proposed by Andrews 
and Thomson [1], suggests depression is adaptive and evolved 
as a response to complex problems requiring analytical 
thought and rumination, which tax the limited processing 
resources of the individual.  The adaptive nature of depression, 
therefore, minimizes disruption of this process.  Creating a 
lack of interest in activities that normally utilize these limited 
resources allow the body and mind to monopolize resources to 
help find resolution.  Depression allows the mind to become 
more focused and analytical, promoting useful cognitive 
strategies.  Since resources are monopolized for analytical 
problem solving, the biological trade-off for such a process is 
the depressive mood.  Initially this theory does seem to have 
some plausibility: many behaviors and physiological 
conditions have proven to be evolutionarily adaptive.   

 
Fever, for example, is an adaptive and beneficial 

physiological response.  Microbial organisms thrive and 
reproduce rapidly in temperatures comparable to normal 
human body temperature. When pathogens are introduced, the 
hypothalamus initiates a rise in temperature, causing the 
reproduction rate of the pathogen to be severely compromised, 
while making pathogen-killing phagocytes more active and 
white blood cells divide quicker [2].  The metabolic cost of 
such an immunological response is high, often leaving the 
individual weak and uncomfortable for a period of time.  Like 
the proposed adaptive depression above, fever has a biological 
trade-off as well.  

 
Unlike the fever account, however, this evolutionary 

hypothesis for depression does not agree with neurobiological 

evidence. At least three key areas of the brain affected by 
depression lead to impaired memory or concentration.  First, 
data from neuroimaging and postmortem studies provide 
significant support for a role of the prefrontal cortex (PFC) in 
major depression.  The PFC is necessary for higher cognitive 
function, and reduced volume in the left hemisphere, caused 
by cellular atrophy and loss, can lead to impaired 
concentration [3]. The PFC receives information from many 
areas in the brain, helps an animal pay attention to the external 
world, and receives information about internal states [4].  
Surely, damage to the PFC places the animal at a 
disadvantage.  The anterior cingulate cortex (AAC) relays 
information from the limbic area to the PFC, and is crucial in 
processing attention [4]; thus reduced activation of the AAC, 
as it happens in depression, can also be expected to result in 
impaired concentration and diminished, not enhanced, 
cognitive control.  These results alone cast great doubt upon 
the analytical rumination hypothesis. In addition, the 
hippocampus and amygdala are important for memory and 
emotion; depressed individuals have shown reduced volume in 
the hippocampus, but increased volume in the amygdala [5]. 
The first leads to even more memory impairments; the second 
suggests a possible inordinate emphasis on negative emotional 
memories: more brooding than rumination.  

 
Depression does not appear to be conducive to analytical 

thinking.  It is hard to imagine that reduced concentration, 
disrupted information relays, and impaired memory would 
promote any beneficial cognitive processes.   It seems unlikely 
that depression would have evolved as a cognitively adaptive 
function.  Future work may extend to other evolutionary 
explanations of depression. 
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