Incorporate Group Information to Enhance Network
Embedding

Jifan Chen, Qi Zhang, Xuanjing Huang
Shanghai Key Laboratory of Data Science
School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, P.R.China

{jfchen14, gz, xjhuang}@fudan.edu.cn

ABSTRACT

The problem of representing large-scale networks with low-
dimensional vectors has received considerable attention in re-
cent years. Except the networks that include only vertices and
edges, a variety of networks contain information about groups
or communities. For example, on Facebook, in addition to users
and the follower-followee relations between them, users can
also create and join groups. However, previous studies have
rarely utilized this valuable information to generate embeddings
of vertices. In this paper, we investigate a novel method for
learning the network embeddings with valuable group information
for large-scale networks. The proposed methods take both the
inner structures of the groups and the information across groups
into consideration. Experimental results demonstrate that the
embeddings generated by the proposed methods significantly
outperform state-of-the-art network embedding methods on two
different scale real-world networks.
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1. INTRODUCTION

Many types of relations and processes in physical, social, and
information systems can be naturally modelled by networks, such
as communication, citation, and social information. However, in
real-world applications, the size of many networks is extremely
large. For example, Twitter has 316 million monthly active users '
in 2015. Methods that process these networks directly through
vertices and edges may encounter efficiency issues when solving
practical real-world problems. Hence, network embedding, which
is used to represent each vertex of a network with a low-
dimensional vector that can preserve the similarities between them,
has attracted continuous attention and has been successfully used
in various applications, including image processing, knowledge
graph, recommendation, etc.
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Along with the increasing requirements, a variety of researchers
have studied the network embedding construction problem from
different aspects [10, 3, 7, 9, 8]. Classical methods (e.g., [soMap [10]
and Laplacian eigenmaps [1]) usually transform this task into a
constrained optimization problem. Hence, the usefulness of these
methods may be heavily impacted by the computation consumption
of processing hundreds of millions of nodes. To process large-
scale networks, DeepWalk [7] uses a shallow neural network
architecture. LINE [9] uses both first-order and second-order
proximity to train the embedding, and negative sampling methods
to reduce the computational requirement. However, most of the
previous studies focused on a classical network and took only
vertices and edges into consideration.

In practical tasks, in addition to vertices and edges, many
networks contain groups or communities. For example, in social
media (e.g., Youtube and Facebook), users can create groups that
other users can join. Previous literatures [11] also show that this
kind of network is common in real-world social, collaboration,
information, and many other kinds of networks. More than 200
different kinds of large real-world networks where nodes explicitly
state their group memberships were studied in the work done
by Yang and Leskovec [11]. Although communities or groups
in networks can provide valuable information, previous network
embedding studies rarely took this information into consideration.

In this paper, we study the problem of incorporating group
information for network embedding generation. We think that the
generated embedding of vertices should be placed closely in low
dimensional space if they share similar neighbours or the group
they joined are similar. In order to meet the requirements, we
then propose a novel method to achieve the task. First, a random
walk cross groups is adopted to gain the information between
vertices. Then the inner structures of groups are obtained by
random sample vertices in that group. Finally, we propose to use
a group vector to preserve the information between vertices as well
as the information of groups.

2. THE PROPOSED METHODS

Inspired by the work of DeepWalk [7] and the idea of modelling
document [4, 2] in natural language processing, our model contains
two main stages, sampling and training. We will then illustrate the
two steps in details.

In the sampling stage, we uniformly take a random vertex v; as
the root of a random walk W, then from the root we sample the
neighbors of the last vertex visited until we reach the maximum
length L. After this step, we can get Wy, = v;, Vit1,Vit2, ..., VL,
where v is one of the neighbours of v;4,—1. In our experiment,
we set the length L to be fixed, but there is no restriction for these
walks to be the same length. Then, for each generated random walk
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Figure 1: The architecture of the proposed model, the blue circles
represent the vertices sampled by random walk and labeled by
group G, the orange circles represent the vertices random sampled
in group G, and the green square represents the group label.

Wo,, we randomly sample a group label g; from the groups v;
belongs to and assign it to W,,,, those labeled walks are then used
for training.

The framework of our training model is shown in Figure 1, as
we can see, every group label and vertex is mapped to a unique
vector and all the vertex embeddings are shared among different
groups. The group vector and the vertex vectors are averaged or
concatenated to predict the center vertex in a sliding window over
arandom walk. We also use the group vector to predict the vertices
randomly sampled in that group. More formally, the objective of
our proposed model is defined to maximize the following log
probability:
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where C' is the set of different groups and g; is the label
of the ith group, Wy, contains random walks W labeled with
Gis ng contains vertices randomly sampled from group ¢;, «
and [ are the weights that specifies a trade-off between the
information cross groups and the information in that group,
the probability log p(vj|vj—k, ..., Vj+k,g:) and log p(vj|g;) are
respectively defined as:
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where M is the number of vertices in the network, v’ and wu are
respectively the output and input vector representation of v, and @
is the averaged vector representation of the context and label g;,
defined as follows,
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where k is the size of sliding window and u is the input
representation of vertex v.

The computation of gradient V logp(v;|vj—k, ..., Vj+k, gi),
V log p(vj|gi), is proportion to the number of vertices in the
network G, and in real-world networks, there can be hundreds of

millions of vertices, so it is impractical to compute these gradients
directly. To address this problem, we adopt the approach of negative
sampling proposed in [5] to reduce the computational requirement.

We then give a brief explanation to our proposed model. Since
we adopt random walks starting from different vertices in the
network, and there should be similar walks for the vertices sharing
similar neighbours, thus, those vertices will be placed closely.
Also, as we use the group vector to predict the vertices randomly
sampled in that group, vertices in that group will be placed closely.
Moreover, because of the special form of assigning group labels to
random walks, vertices from different groups may be assigned with
the same group label, the group vector acts as a memory cell that
contains both the information of vertieces in that group and across
groups, resulting in a closer distance between some vertices in same
groups. We name our proposed model GENE, which means group
enhanced network embedding.

3. EXPERIMENT

In this section, we report the experimental results of our methods
on two large scale real-world networks. We use two different group
recommendation tasks to evaluate the quality of the generated
embeddings.

3.1 Datesets

We use two large real world datasets for evaluating the proposed
methods.

e Amazon: This network is provided by Yang [11] and
collected by crawling Amazon website. In this network, if
a product % is frequently co-purchased with product j, the
graph contains an undirected edge from ¢ to j. Each product
category provided by Amazon defines each ground-truth
community.

e Youtube: This network is provided by Alan Mislove [6].
Youtube is a video-sharing web site that includes a social
network. In the Youtube social network, users form friend-
ship each other and users can create groups which other users
can join. Such user-defined groups are considered as ground-
truth communities.

3.2 Baseline Methods

We compare our proposed methods with some of the state-of-art
existing network embedding methods to validate the performance.

o DeepWalk [7]: It uses information obtained from truncated
random walks to learn latent representations by treating
walks as the equivalent of sentences.

e LINE [9]: It is a network embedding method, which tries to
preserve both the local and global network structures.

e GroupWalk: It only takes the labeled random walks cross
groups mentioned above into consideration. The group
vector and the vertex vectors are averaged or concatenated to
predict the centre vertex in a sliding window over a random
walk.

e GroupOnly: It only uses the group vector to predict the
vertices sampled in a specific group.

They are publicly available. http://snap.stanford.edu/data/



Table 1: Results of recommendation Task1l on Amazon

percentage 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk | 52.52% | 58.93% | 65.80% | 69.60% | 73.65% | 74.64% | 76.41% | 77.61% | 79.01%
LINE 46.22% | 53.26% | 60.02% | 64.22% | 68.38% | 70.22% | 72.08% | 73.12% | 74.79%
MAP@5 | GroupWalk | 58.85% | 66.67% | 73.09% | 77.26% | 81.25% | 82.65% | 84.17% | 85.22% | 87.25%
GroupOnly | 56.90% | 61.03% | 63.23% | 68.94% | 72.98% | 74.59% | 74.95% | 74.26% | 70.86%
GENE 63.64% | 70.65% | 76.25% | 80.50% | 84.13% | 84.79% | 85.63% | 85.41% | 84.41%

Table 2: Results of recommendation Task2 on Amazon

Percentage 5% 10% 15% 20% 25% 30%
DeepWalk | 33.94% | 51.57% | 55.29% | 58.53% | 62.00% | 64.85%
LINE 30.27% | 46.38% | 49.88% | 53.21% | 56.70% | 59.64%
MAP@5 | GroupWalk | 37.67% | 61.61% | 63.05% | 66.60% | 70.07% | 72.88%
GroupOnly | 34.86% | 58.15% | 61.75% | 64.85% | 64.88% | 72.80%
GENE 42.48% | 62.32% | 67.01% | 70.07% | 72.91% | 75.56%

3.3 Experiment Protocols

We evaluate the proposed methods on two tasks of recommen-
dation, the ground-truth communities in the datasets are treated as
the groups mentioned above.

e Task 1: We randomly sample 10% nodes in the network
and then remove their communities by the ratio increasing
from 10% to 90%. The randomly removed communities are
used as the ground-truth for evaluation. The performance
of recommendation can be evaluated with them. It is a
simulation for the following situation: There are several new
nodes joined the network, they have formed the relationship
with other nodes but with few communities, then we have to
recommend new communities for them.

e Task 2: For all of the nodes in the network, we remove their
communities by the ratio increasing from 5% to 30%. The
randomly removed communities are used as the ground-truth
for evaluation. It is a simulation for such situation: The whole
network has been well formed and is relatively stable, then
we have to recommend new communities for the nodes in the
network to join.

The recommend protocol is described as follows: First, for
each node n, we find its most similar points set S by computing
the cosine similarity between its embedding and other nodes’
embedding. Second, for each node r in the set S, find all the
communities r belongs to, if there are any group that dose not
belong to n, we recommend this group to n.

3.3.1 Parameters Setting

In the random walk phase, we iterate over the network for 10
times. At each iteration, we sample one random walk per node and
we set the walk length to be fixed to 15 for both of the networks.
For the GENE model, we simply set « = § = 1. For the negative
sampling part in the proposed method, the number of negative
samples is set to 5. The number of vertices randomly sampled from
groups is also set to 5.

3.4 Results and Analysis on Amazon

The results on Task 1 are shown in Table 1, it is obvious that
the MAP @5 of all the methods improve as we increase the ratio of
removing communities. It is because when the ratio increases, the

number of ground-truth answers also increases, causing a higher
precision of top ones.

Another observation from the table is that by adding group
vertices, GroupWalk achieves consistently better performance
than DeepWalk, and GroupOnly also achieves a fairly good
performance. GENE outperforms all of the other methods and
achieves the best performance. It not only proves the group
information is useful but also shows the way we proposed to
incorporate those inner-group and cross-group information is
actually useful.

From Table 1, we can also find that the performance of
the GroupOnly model improves at first as we remove more
communities. But when we remove more than 70% communities,
its performance begins to decrease. This is mainly because when
we remove a large amount of community relationships from
some vertices, then those vertices can only appear in a small set
of communities, causing a lower probability to be sampled in
sampling stage and thus they can be trained with less communities.
So there is no surprise for the decreased performance, and this also
explains why there is a drop of performance of the GENE model
when we remove the communities by 90%.

Then we compare the GroupWalk and the GroupOnly model, the
GroupWalk performs much better than the GroupOnly consistently.
The result states that there are more groups recommended by
finding nodes sharing the same neighbors than the nodes in the
same community on Amazon network.

The GENE model achieves the best performance except the
90% remove of communities, it proves our assumption that both
inner-group and cross-group information are helpful for network
embedding construction, and they act like a supplement to each
other. GENE model has taken both of the information into
consideration, so it performs better than the GroupWalk and
GroupOnly model alone. The performance of the GENE decreases
as the GroupOnly model, but in a much small range, showing this
model is also stable.

The results for Task 2 are shown in Table 2, the results are almost
in the same patterns as what shows in Table 1. The GENE model
outperforms all of the other methods, and in general, GroupWalk
and GroupOnly also achieve better results than DeepWalk and
LINE. It proves that our proposed method can do better in
recommendation for the stable vertices in a network as well as the
vertices which join the network recently.



Table 3: Results of recommendation Task1 on Youtube

percentage 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk | 11.71% | 14.39% | 21.32% | 27.96% | 32.48% | 34.61% | 36.75% | 39.10% | 40.25%
LINE 7.34% 7.88% 14.52% | 17.56% | 20.92% | 22.46% | 23.56% | 25.72% | 29.31%
MAP@5 | GroupWalk | 13.79% | 19.15% | 22.68% | 31.55% | 33.54% | 38.46% | 40.93% | 44.21% | 49.71%
GroupOnly | 16.50% | 21.56% | 29.39% | 33.48% | 37.37% | 42.65% | 38.30% | 37.43% | 36.27%
GENE 23.31% | 24.92% | 32.00% | 39.52% | 42.21% | 45.31% | 49.99% | 51.93% | 48.23%
Table 4: Results of recommendation Task2 on Youtube

percentage 5% 10% 15% 20% 25% 30%

DeepWalk 7.74% 11.51% | 13.44% | 15.78% | 18.79% | 21.75%

LINE 4.02% 5.96% 8.41% 9.35% 10.88% | 12.91%

MAP@S5 | GroupWalk | 9.57% 12.67% | 15.09% | 18.69% | 21.53% | 24.87%

GroupOnly | 12.88% | 16.77% | 18.65% | 21.88% | 25.57% | 27.85%

GENE 13.56% | 18.62% | 20.92% | 24.51% | 28.20% | 32.08%

3.5 Results and Analysis on Youtube

The Youtube network is quite different from Amazon especially
for its sparse group membership. Facing such situation, let’s look
at our results in Table 3 and Table 4.

The results in Table 3 are much worse than the results of
Amazon network shown in Table 1, but it is reasonable since the
group membership per node decreases a lot, it is harder for rec-
ommendation. Once again, GENE achieves the best performance,
and incorporating group information significantly improves the
performance.

Take a comparison between the GroupWalk and GroupOnly
model, things go to the opposite side of what shows in Amazon
network. The GroupOnly model generally performs better than
GroupWalk model, except for the cases when we remove more than
70% of communities. Such results show that there are more groups
recommended by finding nodes in the same community than the
nodes sharing the same neighbours on Youtube network. From this
result, we can also see the difference between the two networks.
The best performance of GENE model once again proves it can
preserve both the inner-group and cross-group information. The
results shown in Table 4 are consistent with the results in Table 3.

Overall, from these results, we conclude that with the test under
two different networks, our network embedding trained with group
information is more effective on the task of recommendation than
the previous methods for training network embedding.

4. CONCLUSIONS

In this work, we study the problem of enhancing network
embeddings using group information for the networks which
explicitly contain groups or communities. We assume that a good
network embedding with group information should take the inner-
group information as well as the cross-group information into
consideration. Hence, we propose a model which incorporates
both the inner structure within a group and the information cross
groups to train the network embedding. Experimental results
demonstrate that the embeddings generated by the proposed
method outperforms state-of-the-art network embedding methods
on two different scale real-world networks.
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