
Neural Sentence Ordering

Xinchi Chen, Xipeng Qiu, Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China

{xinchichen13, xpqiu, xjhuang}@fudan.edu.cn

Abstract

Sentence ordering is a general and critical task
for natural language generation applications.
Previous works have focused on improving
its performance in an external, downstream
task, such as multi-document summarization.
Given its importance, we propose to study it
as an isolated task. We collect a large corpus
of academic texts, and derive a data driven ap-
proach to learn pairwise ordering of sentences,
and validate the efficacy with extensive exper-
iments. Source codes1 and dataset2 of this pa-
per will be made publicly available.

1 Introduction

The goal of sentence ordering is to arrange a set of
sentences into a coherent text in a clear and con-
sistent manner (Grosz et al., 1995; Van Berkum et
al., 1999; Barzilay and Lapata, 2008). The task
is general and yet challenging, and is especially
important for natural language generation (Reiter
and Dale, 1997). Its applications include multi-
document summarization, question answering, and
concept-to-text generation. Improper ordering of
sentences can generate confusing texts, degrading
readability.

A text should be organized according to it
discourse coherence of the following properties:
rhetorical (Mann and Thompson, 1988) coherence
(Hobbs, 1990), topical relevancy, chronological se-
quence, and cause-effect (Hume, 1750; Okazaki et
al., 2004). These properties intertwine with each

1https://github.com/fudannlp
2http://nlp.fudan.edu.cn/data/

(1) He liked music when he was a boy.
(2) People are shocked by his potential.
(3) Chopin is a great musician in Poland.
(4) When he was 15, he finished his first
waltz.
Gold: (3) (1) (4) (2)

Table 1: Illustration of sentence ordering task. Mul-
tiple discourse coherence relations might appear in a
single text. First sentence (3) declares a topic. Sen-
tences (1) (4) are in chronological sequence. How-
ever, sentence (2) is a result, so it should be the last
sentence so as to abide to a cause-effect relation.

other, and can be quite subtle, as shown in the ex-
ample in Table 1.

Most of previous researches of sentence order-
ing were integrated into an external and downstream
task, such as multi-document summarization (Barzi-
lay and Elhadad, 2002; Lapata, 2003; Bollegala
et al., 2010). The input sentences are extracted
from multiple sources, therefore their intrinsic co-
herence is relatively weak. Consequently, it is some-
what difficult to judge of the order of given sen-
tences. Moreover, these methods addressed the or-
dering problem of newspaper articles. Ordering cri-
teria include majority ordering, chronological or-
dering, topical-closeness, precedence, and succes-
sion. Among them, chronological ordering (i.e. or-
ders sentence by the publication date) can produce
satisfactory orderings (Barzilay and Elhadad, 2002;
Okazaki et al., 2004). Obviously, this is a natural
result for ordering sentences extracted from news-
paper articles, since the task is to arrange a large

ar
X

iv
:1

60
7.

06
95

2v
1

 [
cs

.C
L

]
 2

3
Ju

l 2
01

6

number of time-series events concerning several top-
ics. Besides, all these criteria can be considered as
reasonable hand-engineered features. Nevertheless,
they cannot be adapted to other tasks or domains, as
our example shows.

In this paper, we stage this problem as a stan-
dalone task, and adopt a data driven approach. We
first derive neural model to encode each sentence
into distributed representation (dense vector), then
predict the pairwise ordering of sentences. Next,
to avoid brute-force rearrangement, we use a beam
search to determine the most probable permutation.

For this purpose, we collect about a million
abstracts of research papers from arXiv website3.
These abstracts are well designed coherent texts,
and each of them involves several different criteria,
including chronological ordering, topical-closeness,
etc. For instance, abstracts might first declare the
shortcomings of previous methods, leading to the
reason why they propose the new one. That is cause-
effect relation. Chronological sequences (marked by
keywords “first”, “then”, etc.) might appear when
they describe their models.

The contributions of this paper can be summa-
rized as follows:

1. We frame sentence ordering as an isolated task,
and collected a large corpus whose correct or-
dering goes beyond conventional criteria.

2. Instead of relying on hand-designed features,
we explore a fully data-driven approach to
learn the order of a set of sentences.

3. We perform extensive empirical studies and
demonstrate the efficacy of our approach.

2 Sentence Ordering

2.1 Task Description
Sentence ordering task takes a text s that is possibly
out-of-order sentences,

s = s1, s2, . . . , sns . (1)

and finds the gold order. A good model must has the
ability to capture the logic of a text. That is, the goal
is to discover an order o, which is equal to the gold
order o∗ of these sentences:

so∗1 � so∗2 � · · · � so∗ns
, (2)

3https://arxiv.org/

Look up table Pairwise order predictionSentence encoding

e

We e1
j

.

.

.
give e2

j

en
j

jquestion

.

.

.
e

Our e1
i

first e2
i

en
i

iminimal
pij

hij

i

j

Figure 1: Neural network approach for pairwise or-
der prediction.

Here, o is one of permutations of numbers in
{1, 2, . . . , ns}. For instance, in Table 1, whereas the
current order o is [1, 2, 3, 4], o = o∗ = [3, 1, 4, 2] is
the gold order.

2.2 Ranking Model
Sentence ordering task can be viewed as a rank-
ing problem. In this paper, we adopt the preva-
lent pairwise ranking model (Schapire and Singer,
1998; Fürnkranz and Hüllermeier, 2003; Zheng et
al., 2007). That is, the goal is to predict the order
of any two sentences pair (si, sj) as shown in Fig-
ure 1. Formally, given representations of sentences
e1, . . . , ens , embeddings from a sentence encoder
(Section 3), we model the probability pij that sen-
tence si precedes sj as:

hij = φ(Wh
ᵀ(ei ⊕ ej) + bh), (3)

pij = σ(Wp
ᵀhij + bp), (4)

where Wh ∈ R2ds×h, bh ∈ Rh, Wp ∈ Rh, bp ∈
R are trainable parameters. σ(·) is sigmoid function
and φ(·) is tanh function.

The score of sentences in order o can be cal-
culated as a log-likelihood maximization problem
(Chen et al., 2013):

score(s, o, i, j) = logpoioj , (5)

Score(s, o) =
ns∑
i=1

ns∑
j=i+1

score(s, o, i, j), (6)

where score(s, o, i, j) indicates the score for sen-
tence pairs (oi, oj) and Score(s, o) indicates the
score of sentences s in order o. Clearly, this can be
seen as a two-layer neural network.

Algorithm 1 Beam search for order prediction.
1: beam = []
2: for i = 1; i <= ns; i++ do
3: item = ([i], 0.0) # tuple (partial order, award)

4: beam.append(item)
5: end for
6: # n+ 1 elements have been generated
7: for n = 0; n < ns − 1; n++ do
8: new beam = []
9: for all item ∈ beam do

10: for j = 1; j <= ns; j ++ do
11: order = item[0] + [j] # append new
12: if any duplicate(order)==True then
13: continue
14: end if
15: award = item[1]
16: for i = 0; i <= n; i++ do
17: award += score(s, order, i, n+ 1)
18: end for
19: new beam.append((order, award))
20: end for
21: end for
22: beam = N-Best(new beam)
23: end for
24: ô, Score(s, ô) = Best(beam)
25: return ô

2.3 Order Prediction
The order prediction phase aims to figure out
the predicted sentence order ô which maximizes
Score(s, o):

ô = argmax
o

Score(s, o), (7)

Search all valid permutations by brute force to
discover the optimal ô is computationally expensive
and fundamentally non-scalable. Therefore, we use
the beam-search strategy to find a sub-optimal order.
The details are show in Algorithm 1.

3 Sentence Encoding

To figure out the impacts of various sentence repre-
sentations, we employ three different sentence en-
coders to model sentences: continuous bag of words
(CBoW), convolutional neural networks (CNN) and
long short-term (LSTM) neural networks. All these

models map words into a embedded space by look-
ing up a embedding table.

3.1 Continues Bag of Words
Continues bag of words (CBoW) model (Mikolov et
al., 2013) simply averages the embeddings of words
of a sentence. Formally, given the embeddings of
nw words of a sentence e1, . . . , enw , we can get sen-
tence embedding e by an average operation:

e =
1

nw

nw∑
k=1

ek, (8)

where e ∈ Rds and ek ∈ Rd, and ds = d are dimen-
sionalities of sentence embedding and word embed-
dings respectively.

3.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) (Simard et
al., 2003) extract local features and gain the global
prominent features by a max-pooling operation over
sentence. Formally, we represent sentence as:

covk = φ(Wᵀ
cov(⊕

lf−1
u=0 ek+u) + bcov), (9)

e = max
k

covk, (10)

where Wcov ∈ R(d×lf)×df and bcov ∈ Rdf

are trainable parameters, and φ(·) is tanh function.
Here, k = 1, . . . , nw − lf + 1, and lf and df
are hyper-parameters indicating the filter length and
number of feature maps respectively. Notably, max
operation in Eq (10) is a element-wise operation.

3.3 Long Short-term Neural Networks
Long short-term (LSTM) neural networks (Hochre-
iter and Schmidhuber, 1997) aim to maintain the
crucial information through time. LSTM is an ad-
vanced recurrent neural network (RNN), which alle-
viates the problem of gradient vanishment and ex-
plosion. Formally, LSTM has memory cells c ∈
Rdr controlled by three kinds of gates: input gate
i ∈ Rdr , forget gate f ∈ Rdr and output gate
o ∈ Rdr :

it
ot
ft
c̃t

 =


σ
σ
σ
φ

(Wg
ᵀ
[

et
ht−1

]
+ bg

)
, (11)

Attributes Train Dev Test
of Abstracts 884,912 110,614 110,615

of Sentences per Abstracts 5.38 5.39 5.37
of Words per Abstracts 134.58 134.80 134.58

Table 2: Details of arXiv datasets.

ct = ct−1 � ft + c̃t � it, (12)

ht = ot � φ(ct), (13)

where Wg ∈ R(d+dr)×4dr and bg ∈ R4dr are train-
able parameters. dr is a hyper-parameter indicating
the cell unit size as well as gate unit size. σ(·) is
sigmoid function and φ(·) is tanh function. Here,
t = 1, . . . , nw. Thus, we would represent sentence
as:

e = hnw . (14)

4 Training

In this paper, we use pairwise ranking model. Thus,
we extract m gold sentence pairs {xi = (sifir, sisec),
yi = 1}mi=1 as positive samples from the whole cor-
pus. Meanwhile, we construct m negative samples
by reversing the gold sentence pairs {xi+m = (sisec,
sifir), yi+m = 0}mi=1.

The objective is to minimize the loss function
J(θ):

J(θ) = − 1

2m

2m∑
i=1

yi logpxi +(1−yi) log(1−pxi),

(15)
where pxi is the probability that sentence pair xi is
in correct order as Eq (4). Here, parameter set θ
indicates all trainable parameters of our model.

We use shuffled mini-batch stochastic gradient
descent (SGD) algorithm together with adadelta
(Zeiler, 2012) to train our model.

5 Experiments

5.1 Dataset
Since abstracts of paper are always well written and
have strong logic clues, we evaluate our models on
all abstracts on arXiv website up to date4. Ab-
stracts from arXiv can be mainly classified into 7
categories: statistics, quantitative biology, physics,
computer science, nonlinear sciences, quantitative

4We collect all abstracts of paper before 2016-5-25.

Categories (Abbreviation) Train Dev Test
Statistics (stat) 19,223 2,465 2,497

Quantitative Biology (qbio) 15,495 1,943 1,866
Physics (phys) 821,795 102,584 102,892

Computer Science (cs) 84,689 10,624 10,453
Nonlinear Sciences (nlin) 13,273 1,619 1,695

Quantitative Finance (qfin) 5,201 708 670
Mathematics (math) 216,153 26,819 26,854

Table 3: Details of category information of arXiv
datasets. Notably, since categories could be over-
lapped, the size of total data set is smaller than the
sum of numbers of all 7 categories.

Initial learning rate α = 0.2
Hidden layer size h = 100

Filter length of CNN lf = 3
Batch size 128
Beam size 128

Table 4: Hyper-parameter configurations.

finance and mathematics. The development set and
test set are the first and last 10% abstracts from shuf-
fled data, and the training set consists of the remains.
The detailed information of arXiv dataset is shown
in Table 2 and Table 3. We use NLTK toolkit (Bird,
2006) to break paragraph into sentences.

5.2 Hyper-parameters

Table 4 gives the details of hyper-parameter config-
urations. Regularization term with coefficient λ =
10−4 is omitted in Eq (15) for simplicity. Besides,
we set number of feature maps df of CNN and cell
unit size dr of LSTM as same as word embedding
dimensionality d.

5.3 Evaluation Metrics

To evaluation the results (predicted orders), we use
three types of metrics: Rouge-S, Rouge-N (Lin,
2004) and P-all. Unlike summarization task, the pre-
cision and recall rates are always the same in sen-
tence ordering task. Thus, Rouge-S, Rouge-N could
be introduced in a simpler way. Moreover, we also
introduce P-all metric to calculate the ratio of exact
matching orders.

5.3.1 Rouge-S
Rouge-S is skip-bigram co-occurrence statistics.

Skip-bigram contains any pair of sentences in text,

Metrics Rouge-S Rouge-2 Rouge-3 P-all
Models CBoW CNN LSTM CBoW CNN LSTM CBoW CNN LSTM CBoW CNN LSTM

25w 0.7993 0.8004 0.8217 0.4421 0.4416 0.4742 0.2420 0.2420 0.2729 0.2881 0.2888 0.3178
50w 0.8002 0.8113 0.8278 0.4438 0.4579 0.4827 0.2437 0.2574 0.2818 0.2892 0.3022 0.3257

100w 0.7982 0.8164 0.8296 0.4426 0.4669 0.4899 0.2423 0.2664 0.2892 0.2870 0.3114 0.3314
200w 0.7992 0.8192 0.8297 0.4422 0.4729 0.4916 0.2420 0.2716 0.2911 0.2866 0.3156 0.3343

Random 0.4999 0.2309 0.0582 0.0807

Table 5: Performances of different models on test set of arXiv dataset.

allowing for arbitrary gaps. Suppose we have a cor-
pus includingM texts s1, s2, . . . , sM . Then, Rouge-
S could be formalized as:

Rouge-S =
1

M

M∑
m=1

|S(sm, ôm)
⋂

S(sm, om∗)|
|S(sm, om∗)|

,

(16)
where S(·) is the set of all skip bigram sentence pairs
of a text. Here, sm is the m-th text. ôm and om∗ are
predicted and gold orders of m-th text respectively.

5.3.2 Rouge-N
Rouge-N is n-gram co-occurrence statistics which

could be formalized as:

Rouge-N =
1

M

M∑
m=1

|N(sm, ôm)
⋂

N(sm, om∗)|
|N(sm, om∗)|

,

(17)
where N(·) is the set of all N consecutive sentences
in a given order.

5.3.3 P-all
P-all aims to calculate the radio of exact matching

orders which could be formalized as:

P-all =
1

M

M∑
m=1

1{ôm = om∗}, (18)

where 1{·} is indicator function.

5.4 Results

We use Rouge-S, Rouge-2, Rouge-3 and P-all met-
rics to evaluate our model with different sentence en-
coders. We also vary dimensionality of word embed-
dings, as shown in Table 5. Line “random” means
we randomly generate the orders for texts.

According to the results, we find the perfor-
mances of CNN and LSTM increase with larger
word embedding size, whereas the performance of

CBoW peaks at 50. Among 3 sentence encoders,
LSTM outperforms others in any case, which is
much more effective than random baseline. Espe-
cially, LSTM achieves 0.3343 on P-all metric, which
means more than one third texts could be ranked
correctly (exactly matched), whereas random base-
line only achieves 0.0807 on P-all metric. Rouge-
S is much higher than other metrics, since any cor-
rect pair of sentences with arbitrary gaps contributes
to Rouge-S score. In general, P-all is harder than
Rouge-3, then Rouge-2 and Rouge-S. However, we
find P-all scores are always higher than Rouge-3
scores here. The reason is that the texts with 2 sen-
tences contribute to P-all score, and their Rouge-3
scores are always 0 as shown in Figure 2c.

Detailed Results Figure 2 summarizes our perfor-
mance on different text sizes, with the embedding
dimension as 200. The x-axis of each sub figure in-
dicates number of sentences. Results show that per-
formances drop rapidly when texts scale up (number
of sentences increases). Generally speaking, texts
with more sentences are more difficult to rank cor-
rectly. Specifically, on P-all metric, CBoW, CNN
and LSTM could achieve 0.8898, 0.9174 and 0.9272
with 2 sentences respectively, whereas random base-
line only makes it at 0.4977. However, the perfor-
mance drops rapidly. LSTM only achieves 0.0015
on P-all with 10 sentences to rank. Notably, Rouge-
3 score of texts with 2 sentences is 0 (Figure 2c),
since there is no 3-grams in this case.

In addition, we investigate the performance on
different categories as shown in Figure 3. Inter-
estingly, according to the category analysis results,
we find that mathematics and nonlinear sciences are
easier than other categories. Specifically, LSTM
could achieves 0.4585 on P-all metric, which means
nearly one half math texts could be predicted ex-
actly.

2 4 6 8 10

0.7

0.8

0.9

1

of sentences

CBoW

CNN

LSTM

(a) Rouge-S

2 4 6 8 10

0.2

0.4

0.6

0.8

1

of sentences

CBoW

CNN

LSTM

(b) Rouge-2

2 4 6 8 10
0

0.2

0.4

0.6

of sentences

CBoW

CNN

LSTM

(c) Rouge-3

2 4 6 8 10
0

0.5

1

of sentences

CBoW

CNN

LSTM

(d) P-all

Figure 2: Performances of different sentence encoders with 200 dimensional word embeddings on different
numbers of sentences on test set of arXiv dataset.

stat qfinqbio cs nlinphys math

0.78
0.8
0.82
0.84
0.86

CBoW CNN LSTM

(a) Rouge-S

stat qfinqbio cs nlinphys math

0.4

0.5

0.6
CBoW CNN LSTM

(b) Rouge-2

stat qfinqbio cs nlinphys math
0.2

0.25

0.3

CBoW CNN LSTM

(c) Rouge-3

stat qfinqbio cs nlinphys math

0.2

0.3

0.4

CBoW CNN LSTM

(d) P-all

Figure 3: Performances of different sentence encoders with 200 dimensional word embeddings on different
categories on test set of arXiv dataset.

(a) CNN for sentence 1 (b) CNN for sentence 2 (c) LSTM for sentence 1 (d) LSTM for sentence 2

Figure 4: Visualization of sentence 1 and sentence 2 using CNN and LSTM.

CBoW CNN LSTM
2 Our second question regarding

the function which computes
minimal indices is whether one
can compute a short list of can-
didate indices which includes a
minimal index for a given pro-
gram

1 Our first question regarding
the set of minimal indices is
whether there exists an algo-
rithm which can correctly label
1 out of k indices as either min-
imal or non minimal

1 Our first question regarding
the set of minimal indices is
whether there exists an algo-
rithm which can correctly label
1 out of k indices as either min-
imal or non minimal

1 Our first question regarding
the set of minimal indices is
whether there exists an algo-
rithm which can correctly label
1 out of k indices as either min-
imal or non minimal

3 We give some negative results
and leave the possibility of pos-
itive results as open questions

2 Our second question regarding
the function which computes
minimal indices is whether one
can compute a short list of can-
didate indices which includes a
minimal index for a given pro-
gram

3 We give some negative results
and leave the possibility of pos-
itive results as open questions

2 Our second question regarding
the function which computes
minimal indices is whether one
can compute a short list of can-
didate indices which includes a
minimal index for a given pro-
gram

3 We give some negative results
and leave the possibility of pos-
itive results as open questions

Table 6: Case Study. Color indicates importance of words in order prediction. The more important the
words are, the darker the color is.

Models PBegin PEnd PMean

CBoW 0.7837 0.5762 0.5263
CNN 0.8294 0.6079 0.5585

LSTM 0.8485 0.6237 0.5760
Random 0.2306 0.2316 0.2307

Table 7: The performance of discerning the begin-
ning and the ending sentences of proposed models
on test set of arXiv dataset.

Moreover, we observed that the beginning
and the ending sentences are easier to discern
(Mostafazadeh et al., 2016) as shown in Table 7.
PBegin and PEnd indicate the ratio of correct begin-
ning and ending cases respectively. PMean indicates
the ratio of correct positions. Notably, results on Ta-
ble 7 are based on models with 200 dimensional em-
beddings.

5.5 Case Study

To gain further insight, we pick the abstract of the
paper “On approximate decidability of minimal pro-
grams” (Teutsch and Zimand, 2015) for case study.
First, we visualize which the key words in abstract
are important in order prediction. Then, we visualize

the importance of words in scoring a given sentence
pair. All visualizations are based on model using 25
dimensional word embeddings trained on computer
science data, and the selected abstract is from test
set of computer science category.

5.5.1 Text Level Visualization

We choose the last three sentences of the abstract
for visualization, as shown in Table 6. The texts
in displayed orders are predicted by CBoW, CNN
and LSTM respectively, and the sequence numbers
in front of sentences indicate gold orders. Color in-
dicates importance of words in order prediction. The
more important the words are, the darker they are
coloured.

How to calculate the importance of words (color)?
Inspired by the back-propagation strategy (Erhan et
al., 2009; Simonyan et al., 2013; Li et al., 2015),
which measures how much each input unit con-
tributes to the final decision, we can approximate the
importance of words by their first derivatives. Given
a text s1, . . . , sn, the embedding of k-th word wi

k in
i-th sentence si is eik. Then, we define Aij(w

i
k) as

the importance of word wi
k in predicting the order of

sentence pair (si, sj):

Aij(w
i
k) =

∂pij

∂eik
, (19)

where pij ∈ R is described in Eq (4).
Thus, we could define the importance of a word

A(wi
k) in whole text as:

A(wi
k) =

n∑
j=i+1

pij |Aij(w
i
k)|, (20)

where | · | is the norm of vector, and we use second
order norm here.

Discussion According to the result, words such as
“first” and “second” are indicative, as they imply
logic clues. Also, since we only take the last three
sentences of the abstract, it is quite reasonable that
the word “results” appears in the last one or two sen-
tences. We also find CBoW makes mistake in pre-
dicting the order of sentence pair (1, 2). Specifically,
if score pCBoW

2,1 indicates the reward of placing sen-
tence 2 in front of sentence 1, we could list the de-
tailed score information of sentence pair (1, 2) and
its reverse:

Models p1,2 p2,1

CBoW 0.4911 0.6097
CNN 0.7083 0.3449

LSTM 0.8744 0.1110

Table 8: Detailed score information of sentence pair
(1, 2) and its reverse.

As shown in Table 8, CBoW believes the sentence
order (2, 1) gets higher score than the reverse. CNN
and LSTM correctly predict the order, and LSTM
does so predict with high confidence, with scores of
orders (1, 2) and (2, 1) as 0.8744 and 0.1110, respec-
tively.

5.5.2 Sentence Level Visualization
To visualize the importance of words in predicting

order of sentence pair explicitly, we print the word
informationAij(w

i
k) of sentence 1 and sentence 2 in

Figure 4. Since CBoW only takes a simple average
operation, word information Aij(w

i
k) in a sentence

is the same. Thus, we only plot the results of CNN
and LSTM.

Discussion As shown in Figure 4, both CNN and
LSTM notice the key words “first” and “seconde”.
However, CNN also concentrates on other words
like “algorithm”, “one” which may not be useful in
deciding the order. As the result in Table 8, LSTM
is more confident than CNN to rank the sentence 1
in front of sentence 2. In another word, LSTM may
clearly capture more important clues or logical in-
formation than CNN.

6 Related Work

A fundamental problem in text generation is infor-
mation ordering, including word and sentence order-
ing. Comparing with word ordering (Tillmann and
Ney, 2000; Zhang et al., 2012; Zhang and Clark,
2015; Schmaltz et al., 2016), sentence ordering is
still less studied. Existing works of sentence order-
ing focus to improve the external and downstream
applications, such as multi-document summariza-
tion and discourse coherence (Van Dijk, 1985; Grosz
et al., 1995; Van Berkum et al., 1999; Elsner et al.,
2007; Barzilay and Lapata, 2008). There is also a
lack of intrinsic evaluation for sentence ordering.

Barzilay and Elhadad (2002) proposed two naive
sentence ordering techniques, such as majority or-
dering and chronological ordering, in the context
of multi-document summarization. Lapata (2003)
proposed a probabilistic model that assumes the
probability of any given sentence is determined by
its adjacent sentence and learns constraints on sen-
tence order from a corpus of domain specific texts.
Okazaki et al. (2004) improved chronological order-
ing by resolving antecedent sentences of arranged
sentences and combining topical segmentation. Bol-
legala et al. (2010) presented a bottom-up approach
to arrange sentences extracted for multi-document
summarization. To capture the association and or-
der of two textual segments (e.g. sentences), they
defined four criteria: chronology, topical-closeness,
precedence, and succession.

Unlike these existing works, we propose a data-
driven method to learn the order of sentences. We
use neural models to encode sentences and learn the
pairwise orders. The text order can be further found
by a beam search process.

7 Conclusions

Although sentence ordering is an important factor
in natural language generation, it still lacks of in-
trinsic evaluation for sentence ordering task. To ad-
dress this, this paper introduces a new large corpus
for evaluation of sentence ordering task. The corpus
is a collection of abstracts of academic papers. We
use this corpus to evaluate a range of neural models.
These neural models perform well for judging the
order of sentence pair, but perform relatively poor
on the whole abstract. Therefore, sentence ordering
is still a challenging problem. We hope that our cor-
pus provides valuable training data and a testbed for
sentence ordering task.

In the future, we would like to integrate other
ranking models like list-wise model for sentence or-
dering task.

References

[Barzilay and Elhadad2002] Regina Barzilay and Noemie
Elhadad. 2002. Inferring strategies for sentence order-
ing in multidocument news summarization. Journal of
Artificial Intelligence Research, pages 35–55.

[Barzilay and Lapata2008] Regina Barzilay and Mirella
Lapata. 2008. Modeling local coherence: An entity-
based approach. Computational Linguistics, 34(1):1–
34.

[Bird2006] Steven Bird. 2006. Nltk: the natural language
toolkit. In Proceedings of the COLING/ACL on Inter-
active presentation sessions, pages 69–72. Association
for Computational Linguistics.

[Bollegala et al.2010] Danushka Bollegala, Naoaki
Okazaki, and Mitsuru Ishizuka. 2010. A bottom-up
approach to sentence ordering for multi-document
summarization. Information processing & manage-
ment, 46(1):89–109.

[Chen et al.2013] Xi Chen, Paul N Bennett, Kevyn
Collins-Thompson, and Eric Horvitz. 2013. Pairwise
ranking aggregation in a crowdsourced setting. In Pro-
ceedings of the sixth ACM international conference on
Web search and data mining, pages 193–202. ACM.

[Elsner et al.2007] Micha Elsner, Joseph L Austerweil,
and Eugene Charniak. 2007. A unified local and
global model for discourse coherence. In HLT-
NAACL, pages 436–443.

[Erhan et al.2009] Dumitru Erhan, Yoshua Bengio, Aaron
Courville, and Pascal Vincent. 2009. Visualizing
higher-layer features of a deep network. University
of Montreal, 1341.

[Fürnkranz and Hüllermeier2003] Johannes Fürnkranz
and Eyke Hüllermeier. 2003. Pairwise preference
learning and ranking. In Machine Learning: ECML
2003, pages 145–156. Springer.

[Grosz et al.1995] Barbara J Grosz, Scott Weinstein, and
Aravind K Joshi. 1995. Centering: A framework for
modeling the local coherence of discourse. Computa-
tional linguistics, 21(2):203–225.

[Hobbs1990] Jerry R Hobbs. 1990. Literature and cog-
nition. Number 21. Center for the Study of Language
(CSLI).

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Hume1750] David Hume. 1750. Philosophical essays
concerning human understanding. Georg Olms Ver-
lag.

[Lapata2003] Mirella Lapata. 2003. Probabilistic text
structuring: Experiments with sentence ordering. In
Proceedings of the 41st Annual Meeting on Associ-
ation for Computational Linguistics-Volume 1, pages
545–552.

[Li et al.2015] Jiwei Li, Xinlei Chen, Eduard Hovy,
and Dan Jurafsky. 2015. Visualizing and un-
derstanding neural models in nlp. arXiv preprint
arXiv:1506.01066.

[Lin2004] Chin-Yew Lin. 2004. Rouge: A package
for automatic evaluation of summaries. In Text sum-
marization branches out: Proceedings of the ACL-04
workshop, volume 8.

[Mann and Thompson1988] William C Mann and San-
dra A Thompson. 1988. Rhetorical structure theory:
Toward a functional theory of text organization. Text-
Interdisciplinary Journal for the Study of Discourse,
8(3):243–281.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. arXiv preprint
arXiv:1301.3781.

[Mostafazadeh et al.2016] Nasrin Mostafazadeh,
Nathanael Chambers, Xiaodong He, Devi Parikh,
Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli,
and James Allen. 2016. A corpus and cloze evaluation
for deeper understanding of commonsense stories.
Proceedings of NAACL HLT, San Diego, California,
June. Association for Computational Linguistics.

[Okazaki et al.2004] Naoaki Okazaki, Yutaka Matsuo,
and Mitsuru Ishizuka. 2004. Improving chronological
sentence ordering by precedence relation. In Proceed-
ings of the 20th international conference on Computa-
tional Linguistics, page 750.

[Reiter and Dale1997] Ehud Reiter and Robert Dale.
1997. Building applied natural language generation

systems. Natural Language Engineering, 3(01):57–
87.

[Schapire and Singer1998] William W Cohen Robert E
Schapire and Yoram Singer. 1998. Learning to order
things. Advances in Neural Information Processing
Systems, 10:451.

[Schmaltz et al.2016] Allen Schmaltz, Alexander M
Rush, and Stuart M Shieber. 2016. Word ordering
without syntax. arXiv preprint arXiv:1604.08633.

[Simard et al.2003] Patrice Y Simard, Dave Steinkraus,
and John C Platt. 2003. Best practices for convo-
lutional neural networks applied to visual document
analysis. In null, page 958. IEEE.

[Simonyan et al.2013] Karen Simonyan, Andrea Vedaldi,
and Andrew Zisserman. 2013. Deep inside con-
volutional networks: Visualising image classifica-
tion models and saliency maps. arXiv preprint
arXiv:1312.6034.

[Teutsch and Zimand2015] Jason Teutsch and Marius Zi-
mand. 2015. On approximate decidability of minimal
programs. ACM Transactions on Computation Theory
(TOCT), 7(4):17.

[Tillmann and Ney2000] Christoph Tillmann and Her-
mann Ney. 2000. Word re-ordering and dp-based
search in statistical machine translation. In Pro-
ceedings of the 18th conference on Computational
linguistics-Volume 2, pages 850–856. Association for
Computational Linguistics.

[Van Berkum et al.1999] Jos JA Van Berkum, Peter Ha-
goort, and Colin Brown. 1999. Semantic integration
in sentences and discourse: Evidence from the n400.
Cognitive Neuroscience, Journal of, 11(6):657–671.

[Van Dijk1985] Teun A Van Dijk. 1985. Semantic dis-
course analysis. Handbook of discourse analysis,
2:103–136.

[Zeiler2012] Matthew D Zeiler. 2012. Adadelta:
an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

[Zhang and Clark2015] Yue Zhang and Stephen Clark.
2015. Discriminative syntax-based word order-
ing for text generation. Computational Linguistics,
41(3):503–538.

[Zhang et al.2012] Yue Zhang, Graeme Blackwood, and
Stephen Clark. 2012. Syntax-based word ordering in-
corporating a large-scale language model. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 736–746. Association for Computational Lin-
guistics.

[Zheng et al.2007] Zhaohui Zheng, Keke Chen, Gordon
Sun, and Hongyuan Zha. 2007. A regression frame-
work for learning ranking functions using relative rel-
evance judgments. In Proceedings of the 30th annual

international ACM SIGIR conference on Research and
development in information retrieval, pages 287–294.
ACM.

	1 Introduction
	2 Sentence Ordering
	2.1 Task Description
	2.2 Ranking Model
	2.3 Order Prediction

	3 Sentence Encoding
	3.1 Continues Bag of Words
	3.2 Convolutional Neural Networks
	3.3 Long Short-term Neural Networks

	4 Training
	5 Experiments
	5.1 Dataset
	5.2 Hyper-parameters
	5.3 Evaluation Metrics
	5.3.1 Rouge-S
	5.3.2 Rouge-N
	5.3.3 P-all

	5.4 Results
	5.5 Case Study
	5.5.1 Text Level Visualization
	5.5.2 Sentence Level Visualization

	6 Related Work
	7 Conclusions

