arXiv:1607.06556v1 [cs.CL] 22 Jul 2016

Syntax-based Attention Model for Natural Language Inference

Pengfei Liu Xipeng Qiu* Xuanjing Huang

Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China
{pfliul4,xpqiu,xjhuang } @fudan.edu.cn

Abstract

Introducing attentional mechanism in neu-
ral network is a powerful concept, and has
achieved impressive results in many natural
language processing tasks. However, most of
the existing models impose attentional distri-
bution on a flat topology, namely the entire
input representation sequence. Clearly, any
well-formed sentence has its accompanying
syntactic tree structure, which is a much rich
topology. Applying attention to such topol-
ogy not only exploits the underlying syntax,
but also makes attention more interpretable.
In this paper, we explore this direction in the
context of natural language inference. The re-
sults demonstrate its efficacy. We also per-
form extensive qualitative analysis, deriving
insights and intuitions of why and how our
model works.

1 Introduction

Recently, adopting neural attentional mechanism
has proven to be an extremely successful technique
in a wide range of natural language processing tasks,
ranging from machine translation (Bahdanau et al.,
2014), sentence summarization (Rush et al., 2015)),
question answering (Hermann et al., 2015)) and text
entailment (Rocktaschel et al., 2015; Wang and
Jiang, 2015} [Cheng et al., 2016). The basic idea is
to learn and attend to most relevant parts of (poten-
tially preprocessed) a sequence X while analysing
or generating another sequence Y.

Taking the following two sentences as examples,
where we highlight the helpful partial information
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Figure 1: A motivated example to illustrate
sequence-based and syntax-based attention model
for target word “autumn”. The square boxes repre-
sent hidden states of the words (or phrases); darker
indicates higher alignment.

alignment from X according to Y with attention.
X: A toddler sits on a rock chair with fallen leaves.
Y': A little child sits quietly on a stone bench in au-
tumn.

The sequence-based attention is illustrated in Fig-
ure [T(a). The representation is a flat sequence, and
attention distribution is applied to this simple topol-
ogy. Although the idea is to soft-align words and
phrases in the two sentences, one can observe that:
1) The hidden state of each position incorporates its
context information, which is implicit and sequen-
tial, alignment at phrase-level is thus challenging
(e.g. “autumn” to “fallen leaves”). 2) As we will
discuss shortly, the attention is implemented with a
weighted sum of sequence, thus lacks linguistic in-
terpretation for its semantic composition.

Any well-formed sentences have its underlying
syntactic structure. It is a tree topology that encodes
a sentence’s important composing subcomponents.
Evidently, this is in stark contrast with the flat and
sequential topology the existing models assume.



In this paper we extend the attentional mecha-
nism from a sequence to a tree, allowing syntactic
information to be integrated. As shown in Figure
[[[b), syntax-based attention allows neural models to
more explicitly capture the phrase-level alignment.
In addition, it clearly reaches a higher level of in-
terpretability. While this observation is general, in
this paper we demonstrate its effectiveness in natu-
ral language inference. We believe other tasks such
as neural translation model (Bahdanau et al., 2014;
Luong et al., 2015) can similarly benefit from this
idea.

The contributions of this paper can be summa-
rized as follows.

1. We extend sequence-based attention to syntax-
based, therefore incorporating richer linguistic
properties.

2. We design and validate our algorithm that
makes such topological attentional mechanism
possible.

3. Beyond quantitative measurement, we care-
fully perform qualitative analysis, and demon-
strate why and how the idea works.

4. Our work can be regarded as an attempt to
boost the generalization ability of attention
matching mechanism by encoding prior knowl-
edge (syntax). As an example, our results show
syntactic structure of sentence or phrase is cru-
cial for text semantic matching.

2 Neural Attention Model for Natural
Language Inference

Natural language inference, also called text entail-
ment, is a task to determine the semantic relation-
ship (entailment, contradiction, or neutral) between
two sentences (a premise and a hypothesis). This
task is important involved in many natural language
processing (NLP) problems, such as information ex-
traction, relation extraction, text summarization or
machine translation.

To better understand this task, we give an example
in the dataset as follows:

Premise: These girls are having a great time look-
ing for seashells.

Hypothesis: The girls are happy.

Label: entailment

More precisely, NLI can be framed as a sim-
ple three-way classification task, which requires
the model to be able to represent and reason with
the core phenomena of natural language semantics
(Bowman et al., 2016).

2.1 Long Short-Term Memory Network

Long short-term memory neural network
(LSTM) (Hochreiter and Schmidhuber, 1997)
is a type of recurrent neural network (RNN) (Elman,
1990), and specifically addresses the issue of
learning long-term dependencies. LSTM maintains
a memory cell that updates and exposes its content
only when deemed necessary.

While there are numerous LSTM variants, here
we use the LSTM architecture used by (Jozefowicz
et al., 2015)), which is similar to the one in (Graves,
2013)) but without peep-hole connections.

We define the LSTM units at each time step ¢ to
be a collection of vectors in R%: an input gate i;, a
forget gate f;, an output gate o, a memory cell c;
and a hidden state h;. d is the number of the LSTM
units. The elements of the gating vectors i;, f; and
o, are in [0, 1].

The LSTM is precisely specified as follows.
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where x; is the input at the current time step; T'a b
is an affine transformation which depends on param-
eters of the network A and b. ¢ denotes the logistic
sigmoid function and © denotes elementwise multi-
plication.

The update of each LSTM unit can be written pre-
cisely as

(ht>ct) = LSTM(ht—L Ct—l,Xt)~ 4)

Here, the function LSTM(:, -, ) is a shorthand
for Eq. (T}H3).

LSTM can map the input sequence of arbitrary
length to a fixed-sized vector, and has been success-
fully applied to a wide range of NLP tasks, such



as machine translation (Sutskever et al., 2014)), lan-
guage modelling (Sutskever et al., 2011)) and natural
language inference (Rocktéschel et al., 2015)).

2.2 Neural Attention Model

Given two sequences X = x1,22, -+ ,Zpand Y =
Y1, Y2, -+ 5 Ym, We let x; € R% denote the embedded
representation of the word x;. The standard LSTM
has one temporal dimension: at position 7 of sen-
tence 1.y, the output h} reflects the meaning of the
subsequence x1.; = T1,- - , T;.

The main idea of attention model (Hermann et al.,
2015) is that the representation of sentence X is ob-
tained dynamically based on the degree of alignment
between the words in sentence X and Y. More for-
mally, for sentence X and Y, we first compute the
hidden state of each sentence by two LSTMs: [T}

hf = LSTM( f—la Cix—lv Xi) )
hj = LSTM(hj_.cj_,,y;) (©6)
While processing sentence Y at time j, the model
emits an attention vector o; € R to weight hy , the

hidden states of X, thereby obtaining a fine-grained
representation r of sentence X as follows:

n
r;’, = Z Ozﬂhf + tanh(Wrr?_l) )
=1

where «; can be compute as:

aji = softmax(ej;) = L(eﬁ) (8)

> i exp(ejir)

Where ej; is a alignment score and can obtained by:

eji = we - tanh(WYhY + W"h + W'rj_;)
©)

where WY, W?* ‘W' are learned parameters.
Finally, the representation of the sentence pair h*

is constructed by the last attention-weighted repre-

sentation r,,, and the last output vector h, as:

h* = tanh(W*r;, + WYhY). (10)

"The model used by (Rocktischel et al., 2015) is a little dif-
ferent from this for a better performance, in which encoding of
one sentence is conditioned on the other.
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Figure 2: Two matching frameworks: Sequence-
based attention model and syntax-based attention
model. The box represents hidden state h of a node
and the bold yellow box represents the node y; of
sentence Y at the position j. The darker blue box
represents a higher alignment score between the cor-
responding node and the node ;.

For the entailment task, the final representation h*
of sentence-pair, is fed into the output layer, gen-
erating the probabilities over all pre-defined classes
(entailment, contradiction, or neutral) .

1 = softmax(W°h* + b°) (11)

where W¢ and b? are parameters of the model.

3 Syntax-Based Attention Matching Model

The building block of this work syntax-based
instead of sequence-based compositional model.
There are several such candidates, such as recur-
sive neural network (Socher et al., 2013)) and tree-
structured LSTM (Tai et al., 20135)). In this paper, we
use latter model since for its superior performance
in representing sentence meaning.

3.1 Tree-structured LSTM

Different with standard LSTM, tree-structured
LSTM composes its state from an input vector and
the hidden states of children units. More formally,
the model takes as input a syntactic tree (con-
stituency tree or dependency tree), then a compo-
sition function is applied to combine the children
nodes according to the syntactic structure to obtain
an new compositional vector for their parent node.



Here we investigate two types of composition
functions for constituency and dependency tree re-
spectively.

Composition Function for Constituency Tree
Given constituency tree 7' induced by a sentence,
there are at most /V children nodes for each parent
node. We refer to hj; and c;; as the hidden state
and memory cell of the k-th child of node j. The
transition equations of each node j are as follows:

C; tanh <.
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h; = o; ® tanh (c;), (15)
Hj=hj1 ®hjs® - ®hyy, (16)

where x; denotes the input vector and is non-zero if
and only if it is a leaf node. o represents the logistic
sigmoid function and ©® denotes element-wise mul-
tiplication. W?, W/, and U* is the weight matrix
which depends on parameters of the network.

Composition Function for Dependency Tree
For the dependency tree, we refer to C'(j) as the set
of children of node j. Then the transition equations
of each node j are formulated as:

C; tanh <
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ij g J
£, = o(W/x; + Ulhy) (18)
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where WP, W/ and U/ are the weight matrices
which depend on parameters of the network.

The update of each unit can be written precisely
as

h; = TreeLSTM(H;, H;,%;).  (22)

Here, the function TreeLSTM(-, -, -) is a short-
hand for Eq. (I2HI6) for constituency tree or (T7{20)
for dependency tree.

3.2 Syntax-Based Attention Matching Model

The second stage of the design is to apply attention
to the tree topology. For two trees 7% and 7Y in-
duced by sentence X and Y, the representation of
their subtrees h{ and hg can be obtained as follows:

h? = T‘r'eeLSTM(Hf,ﬁjyxi)
hY = TreeLSTM(H!, #;,y;)

(23)
(24)

At node j of tree TY, we reread over tree 7% and

compute a weighted tree representation ry of tree

T*, which also recursively accumulate information

from its children R; = {r;1,rj2, -~ ,T;nN}.
Tn
rf =) ayihf + tanh(g(R;)) (25)
i=1

where T}, denotes the number of nodes of tree 17;
avj; measures the alignment degree between two sub-
trees; g(R;) is recursively accumulate information
from its children.

For constituency tree,

gR;) =W'(rji®rja®-- - ®rjn).  (26)
For dependency tree,
- C0)
9(R;) =W" Z T 27)
k

The attention «;; between two subtrees h? and h}
can be computed as

eji = " tanh(Wh 4 Whi + g(R;)).
(28)

aji = softmax(ej;). (29)

The final representation h* of two trees 7% and
TY can be obtained by

h* = tanh(W?r7, + WYhj ), (30)



where T}, denotes the number of nodes of tree 7T;,.

To facilitate the description later, we refer to
SAT-LSTMs as our proposed syntax-based attention
model. dLSTM and cLSTM represent LSTMs are
built over a dependency and constituency respec-
tively.

4 Training

Given a sentence pair (X,Y) and its label [. The
output [ of neural network is the probabilities of the
different classes. The parameters of the network
are trained to minimise the cross-entropy of the pre-
dicted and true label distributions.

C
LX, YLl ==Y Llogl;), (1)
j=1

where [ is one-hot representation of the ground-truth
label [; 1 is predicted probabilities of labels; C is the
class number.

To minimize the objective, we use stochastic gra-
dient descent with the diagonal variant of AdaGrad
(Duchi et al., 2011). To prevent exploding gradients,
we perform gradient clipping by scaling the gradient
when the norm exceeds a threshold (Graves, 2013)).

4.1 Initialization and Hyperparameters

Orthogonal Initialization We use orthogonal ini-
tialization of our LSTMs, which allows neurons to
react to the diverse patterns and is helpful to train a
multi-layer network (Saxe et al., 2013)).

Unsupervised Initialization The word embed-
dings for all of the models are initialized with the
100d GloVe vectors (840B token version, (Penning-
ton et al., 2014)). The other parameters are initial-
ized by randomly sampling from uniform distribu-
tion in [—0.1, 0.1].

Hyperparameters For each task, we take the
hyperparameters which achieve the best perfor-
mance on the development set via an small grid
search over combinations of the initial learn-
ing rate [0.05,0.0005,0.0001], Iy regularization
[0.0,5E—5,1E—5,1E—6] and the threshold value
of gradient norm p [5, 10, 50]. The final hyper-
parameters are reported in Table

Hyper-parameters SNLI
Embedding size 100
Hidden layer size 100

Initial learning rate 0.005
Regularization 0.0
p 50

Table 1: Hyper-parameters for our model on SNLI.

5 Experiment

We use the Stanford Natural Language Inference
Corpus (SNLI) (Bowman et al., 2015)). This cor-
pus contains 570K sentence pairs, and all of the
sentences and labels stem from human annotators.
SNLI is two orders of magnitude larger than all other
existing RTE corpora. Therefore, the massive scale
of SNLI allows us to train powerful neural networks
such as our proposed architecture in this paper.

5.1 Data Preparation

We parse the sentences in the dataset for our tree-
structured LSTMs. More specifically, for the De-
pendency Tree-LSTMs, we produce dependency
parses(Chen and Manning, 2014) of each sentence;
For constituency Tree-LSTMs, the trees are parsed
by binarized constituency parser(Klein and Man-
ning, 2003)).

5.2 Competitor Methods

e Neural bag-of-words (NBOW): Each sequence
is represented as the sum of the embeddings of
the words it contains, and then they are con-
catenated and fed to a multi-layer perceptron
(MLP).

e LSTM encoders: The sentence pair are en-
coded by LSTMs respectively.

e Attention LSTM encoders (AT-LSTMs): The
sentence pair are encoded with the consider-
ation of the alignment of words between two
sentences (Rocktaschel et al., 2015)).

e Tree-based CNN encoders: The sentence pair
are encoded by tree-based CNNs respectively
(Mou et al., 2015).

e Tree-based LSTM encoders: The sentence pair
are encoded by tree-based LSTM respectively.
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Figure 3: Visualization of syntax-based alignments
over two subtrees. The numbers along the dotted
lines represent the alignment scores.
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e SPINN-PI encoder: The sentence pair are en-
coded by stack-augmented parser-interpreter
neural network with parsed input respectively,
which is proposed by (Bowman et al., 2016)).

5.3 Results

Table [2| provides a comparison of results on SNLI
dataset. From the table, we can observe that:

e For two kinds of syntax-based LSTM encoders,
cLSTM achieve better performances than dL-
STM, which is consistent with |Gildea (2004)
experiment results on tree-based alignment.
We think the reason is that constituency-based
model can better learn the semantic composi-
tionality and it has taken the orders of child
nodes into consideration.

e Irrespective of attention mechanism, both two
syntax-based LSTM encoders are superior to
sequence-based LSTM encoder, which indi-
cates the effectiveness of syntax-based compo-
sition.

e SAT-cLSTMs surpass all the competitor
methods and achieve the best performance.
More precisely, SAT-cLSTMs outperform
AT-LSTMs by 2.1%, and are superior to
Tree-LSTM encoders by 3.8%, which suggests
the importance of incorporating syntactic
information into attention models.

5.4 Experiment Analysis

5.4.1 Analysis of Compositionality and
Attention Mechanism

Can our model select useful composition infor-
mation using attention mechanism ? To answer this
question, we sample several sub-tree pairs from test
dataset which achieve the best alignment of a sen-
tence pair.

As shown in Figure (3| we can observe that,

e The alignments in these cases are consistent
with people’s understanding. For example, the
alignment degree a(autumn, fallen leaves)
is much higher than a(autumn, fallen) and
a(autumn, leaves), which is crucial for the fi-
nal prediction of the two sentence’ relation and
indicates the effectiveness of this syntax-based
composition.

e Our model has learned the alignment between
subtrees, meaning that matching patterns at
word-phrase or phrase-phrase level can be cap-
tured effectively not merely at word-word level.

5.4.2 Analysis of Phrases Representations

We compute the representations of each subtree
and show some examples sampled from test dataset
with their most related neighbors in Table 3]

The phrasal paraphrases, such as “having a
great time/enjoy time together”, have
obtained close representations, which is more help-
ful for the identification of the entailment rela-
tion of two sentences. Besides, we can see the
ability of the model to learn a variety of gen-
eral paraphrastic transformations, such as possessive
rule “persons’ s/of a person” and verb par-
ticle shift “holding his cup up/holding
up a white plastic cup”.

Some other examples such as “wearing a
pink dress/in a pink dress/dressed
in pink” indicate our SAT-LSTMs model is more
robust to syntactic variations, which is more crucial
to boost the generalization ability while encoding a
sentence or sentence pair.

5.4.3 Analysis of Learned Sentence
Representations

We explore the sentence representations learned
by the three different models on the SNLI. Table 4]



Model Hidden.

Train acc. (%) Dev. acc. (%) Test acc. (%)

Previous non-NN results

Lexicalized classifier (Bowman et al., 2015) — 99.7 — 78.2
Previous sentence encoder-based NN results
LSTM encoders (Bowman et al., 2015) 100 84.8 — 77.6
Tree-based CNN encoders (Mou et al., 2015) 300 834 82.4 82.1
SPINN-PI encoders (Bowman et al., 2016]) 300 89.2 — 83.2
AT-LSTMs encoders (Rocktéschel et al., 2015) 100 85.3 83.7 83.5
Our results
Tree-dLSTM encoders 100 83.5 77.1 78.7
Tree-cLSTM encoders 100 82.2 79.8 80.3
AT-LSTMs encoders 100 84.2 82.7 82.0
SAT-dLSTMs 100 86.6 83.8 83.4
SAT-cLSTMs 100 87.9 85.0 84.1

Table 2: Results of our proposed models against other neural models on SNLI corpus. Hidden. is the
number of neurons in hidden state h. Train, Dev. and Test denote the classification accuracy. SAT-LSTMs
denote our proposed syntax-based attention model. dLSTM and cLSTM represent LSTMs are built over a

dependency and constituency respectively.

person ’s holding his cup up wearing a pink dress having a great time
people ’s holding up a white plastic cup in a pink dress having a good time
belong to the lady with a cup in his hand dressed in pink enjoy time together
of a person with a beer in his hand wearing a pink dress is very happy
of humans holds up a playing card in pink enjoying a night

Table 3: Nearest neighbor phrases drawn from the SNLI test set, which based on cosine similarity of different

representations produced by SAT-LSTMs.

the boys are bare chested

a golden retriever nurses puppies

the men are naked
the boys are stretching
the boys are sleeping
the boys are sitting down

NBOW

the man has nothing on his face
a man is outside with no bag on his back
his bald head is exposed
a man in summer clothing skiing on thin snow

AT-LSTMs

the man is not wearing a shirt
two men are shirtless
the man is completely nude
a man without a shirt is on the water

SAT-LSTMs

a cat nurses puppies
a puppy barks at a girl
the dog is a labrador retriever
a golden retriever nurses some other dogs puppies

a girl is sitting on a park bench holding a puppy
a big dog watching over a smaller dog
the big dog is checking out the smaller dog
a gal is holding a stuffed dog

a golden retriever nurses some other dogs puppies
three puppies are snuggling with their mother by the fire
puppies next to their mother
a mother dog checking up on her baby puppy

Table 4: Nearest neighbor sentences drawn from the SNLI test set, which based on cosine similarity of
different representations emitted by NBOW, AT-LSTMs and SAT-LSTMs.

illustrates the nearest neighbors of sentence repre-
sentations learned from NBOW, AT-LSTMs, SAT-

LSTMs.

As shown in Table NBOW finds a sen-



tence’s neighbors with full consideration of lexical
paraphrase. ~ While the neighbors returned by
SAT-LSTMs are mostly syntactic variations with
meaning preserving. For example, for the first
sentence “the boy are bare chested”,
NBOW gives the “the men are naked” most
likely based on the word pair “bare/naked”,
thereby ignoring the information of “chested”.
However, the sentences given by SAT-LSTMs
contain the same meaning with ample ways
of expressions, such as
wearing a shirt”and “the man without
a shirt”, which accurately reflect the meaning
of “bare chested”.

Compared with AT-LSTMs, SAT-LSTMs can
provide more flexible syntactic expressions. For ex-
ample, for the sentence ‘a golden retriever
nurses puppies”, SAT-LSTMs capture this
syntactic paraphrase ‘A nurses B/B is
snuggling with A”, which is difficult for
NBOW and AT-LSTMs models.

“the man is not

6 Related Work

There has been recent work proposing to incorpo-
rate syntax priori into neural network. [Socher et
al. (2012) use a recursive neural network model
that learns compositional vector representations for
phrases and sentences of arbitrary syntactic type
and length. [Tai et al. (2015) introduce a general-
ization of the standard LSTM architecture to tree-
structured network. Bowman et al. (2016) propose
an stack-augmented Parser-Interpreter Neural Net-
work for sentence encoding, which combines pars-
ing and interpretation within a single tree-sequence
hybrid model. These models are designed for rep-
resenting a sentence in more plausible way, while
we want to model the strong interaction of two sen-
tences over tree structure.

More recently, several works have tried to in-
corporate priori into attention based model. |Cohn
et al. (2016) extend the attentional neural transla-
tion model to include structural biases from word
based alignment models. |Gu et al. (2016) incorpo-
rate copying mechanism into attention based model
to address the OOV problem in a more systemic way
for machine translation. Different with these mod-
els, we augment attention model with syntax priori

for semantic matching.

Another thread of work is sequential attention
models for natural language inference. Rocktischel
et al. (2015)) propose to use attention model for sen-
tence pair encoding. (Wang and Jiang (2015)) extend
this model by paying more attention to important
word-level matching results. Compared with these
models, we integrate syntax structure into attention
matching model, which can match two trees in a
plausible way.

7 Outlook

Natural language has its underlying syntactic struc-
ture, which gives a feasibility to assign attention to
tree-structured topologies instead of a flat sequence.
Although we just use it in context of natural lan-
guage inference, the idea of syntax-based attention
model can be easily transferred to other tasks for
phrase-level alignment, such as neural translation
model. When we submit our paper, we find this
paper (Eriguchi et al., 2016), which proposed tree-
to-sequence attention based model for neural ma-
chine translation, thereby showing the effectiveness
of syntax-based attention mechnism. The major dif-
ference is their model is based on word-to-word and
word-to-phrase attention (sequence conditioned on
tree) whereas our proposed model focus on phrase-
to-phrase attention (tree over tree).

8 Conclusion

In this paper, we integrate syntax structure into at-
tention model. Compared with sequence-based at-
tention model, our model can easily capture phrase-
level alignment. Experiments on Stanford Natu-
ral Language Inference Corpus demonstrate the effi-
cacy of our proposed model and its superiority to
competitor models. Furthermore, we have made
an elaborate experiment design and case analysis to
evaluate the effectiveness of our syntax-base match-
ing model and explain why attention over trees is a
good idea.

In future, we wish to use our SAT-LSTMs
matching model to learn the representation of
phrasal(Wieting et al., 2015) or syntactic para-
phrases from massive paraphrase dataset, such as
PPDB (Ganitkevitch et al., 2013)). We expect that
the learned representation of subtree with rich prior



knowledge should be useful for downstream tasks in
a pre-trained manner.
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