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Abstract

Word embeddings, which can better capture the fine-
grained semantics of words, have proven to be useful
for a variety of natural language processing tasks.
However, because discourse structures describe the
relationships between segments of discourse, word
embeddings cannot be directly integrated to perform the
task. In this paper, we introduce a mixed generative-
discriminative framework, in which we use vector
offsets between embeddings of words to represent the
semantic relations between text segments and Fisher
kernel framework to convert a variable number of
vector offsets into a fixed length vector. In order
to incorporate the weights of these offsets into the
vector, we also propose the Weighted Fisher Vector.
Experimental results on two different datasets show that
the proposed method without using manually designed
features can achieve better performance on recognizing
the discourse level relations in most cases.

Introduction
Discourse relations describe how two segments (e.g. clauses,
sentences, and larger multi-clause groupings) of discourse
are logically connected. These relations can be used to
describe the high-level organization of text. Hence, various
NLP applications, such as opinion mining (Somasundaran
and Wiebe 2009; Heerschop et al. 2011; Taboada et al.
2011), summarization (Thione et al. 2004; Cristea, Pos-
tolache, and Pistol 2005), essay quality analysis (Attali
and Burstein 2006), and event detection (Huang and Riloff
2012), can benefit from it.

Along with the increasing requirements, the discourse
relation classification and discourse parsing tasks
have received considerable attention in recent years.
Existing researches have been conducted from different
perspectives, including rich linguistic features (Soricut
and Marcu 2003; Subba and Di Eugenio 2009;
Feng and Hirst 2012), rule based methods (Polanyi et al.
2004), statistical methods (Baldridge and Lascarides 2005;
Duverle and Prendinger 2009; Lin, Kan, and Ng 2009;
Muller et al. 2012; Li et al. 2014; Ji and Eisenstein 2015),
and deep learning based methods (Li, Li, and Hovy 2014).
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Because there is no discourse-level grammar analogous
to sentence-level grammar, discourse relations are less
straightforward to define and capture than sentence-level
parsing. Most of the works mentioned above treated the task
as a supervised classification problem and used linguistic
features relating to words and other syntax-related cues to
perform the task.

Recently, methods for learning continuous word represen-
tations have succeeded in capturing semantic and syntactic
regularities using vector arithmetic (Pennington, Socher,
and Manning 2014). Mikolov et al. (2013) introduced an
interesting observation about word analogies. For example:

v(king)− v(queen) ≈ v(man)− v(woman)

v(·) denotes the embedding of a word. This indicates that
vector offsets in embedding space can represent the shared
semantic relations between word pairs. Many existing works
also show that hidden relation between words can be
represented by the vector arithmetic (Pennington, Socher,
and Manning 2014; Fu et al. 2014). Thus, it motivates us
to assume that offsets between embeddings of words in a
pair of text segments can represent their relevant semantic
relations.

In this paper, we introduce a method based on the idea of
using vector offsets between word embeddings for discourse
relation extraction. Each word in a discourse segment is
first embedded into a d-dimensional vector space by a
looking-up word embeddings table. Word embeddings can
be learned in advance by a feed-forward neural network
language model (Bengio et al. 2006), continuous skip-
gram model (Mikolov et al. 2013), or other methods. Then
vector offsets between word embeddings in segment pairs
are calculated. As the number of words is variable in
different segments, we propose to use the Fisher kernel
framework (Jaakkola, Haussler, and others 1999) to aggre-
gate these vector offsets into a fixed length vector. Finally,
supervised methods are used to model the task based on the
fixed length vectors.

The main contributions of this work can be summarized
as follows:

• We proposed to use vector offsets between word embed-
dings to represent semantic relations between sentences
or segments.
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Figure 1: The processing framework of the proposed approach.

• The Fisher kernel framework is incorporated to convert
a variable number of vector offsets into a fixed length
vector, and in order to incorporate the weights of these
offsets into the vector, we also propose the Weighted
Fisher Vector.

• Experimental results on two datasets show that the
proposed method can achieve comparable performance
with the state-of-the-art methods using rich linguistic
features.

The Proposed Approach
Inspired by the observations in word analogy of word
embeddings, we in this work assume that vector offsets
between word embeddings in each pair of text segments
can represent the semantic relations between them. The
processing flow of the proposed approach is shown in
Fig. 1. Given a pair of text segments, first, through a lookup
table, each word in the pair of text segments is represented
by its corresponding word embedding. Then, the vector
offsets between all of the word embeddings in the two text
segments are computed. These vector offsets compose a
word embedding offset matrix. Since the size of the matrix is
depended on the lengths of the two text segments, it can not
be directly used for supervised methods. Hence, we then use
Fisher kernel framework to aggregate them into fixed-length
vectors. Finally, we use a supervised classifier to predict the
discourse relation based on the generated vectors. In the
following of this section, we will illustrate the details of
these steps of the proposed framework.

The Word Embedding Offset Matrix
Distributed word representations (word embeddings) are
usually designed to capture the attributional similarities
between words, which is defined by Turney (2006). It
means that words with the same context will be close
in the embeddings spaces. Recently, various works also
demonstrated that vector offset between word embeddings
can present the hidden semantic relations between words.
Based on these observations, in this work, we propose to

use offsets between embeddings of words in a pair of text
segments to learn the relations between them.

A text segment s with length N in a corpus D can be
represented as a word sequence w1, w2, ...wN . Through a
lookup table T , s can be transformed to a sequence of word
embeddings es = ew1

, ew2
, ...ewN with each word in s been

mapped into a d-dimensional vector space. Suppose there
are two text segments sp, sq with length m and n, in order
to construct an embedding offset matrix M , we first convert
them to two embedding sequences esp and esq . Then we
compute the vector offsets between all word embeddings in
the two segments, these vector offsets fill an offsets matrix
M , where M is a m × n matrix and M = {oij |oij =
ewi − ewj , 0 ≤ i ≤ m, 0 ≤ j ≤ n}, ewi and ewj are the
ith and jth word embeddings in esp and esq . As the number
of words are variable in different segments, the size of the
embedding offset matrix (EOM) is also different.

Fig. 2 visualizes four word embeddings offset matrixes,
which are constructed based on the examples given in the
PDTB annotation manual (Prasad et al. 2007). Fig. 2 (a)
and (b) show examples about CONTINGENCY relation.
Fig. 2 (c) and (d) show examples about COMPARISON
relation. From the these examples, we can see that a large
percent of offsets in Fig. 2 (a) and (b) point to the bottom-
left directions. While, many vectors offsets in Fig. 2 (c) and
(d) point to the right directions, except for the offsets related
to the stop words (such as to, the, et al. ). We can see that the
EOMs constructed based on the sentence pairs with the same
relations are similar with each other and EOMs of different
relations are different.

Fisher Vector

Given an embedding offset matrix M , since we don’t focus
on the order of those vector offsets in the matrix, thenM can
be treated as a bag of vector offsets M = {ot, 1 ≤ t ≤ N},
where N represents the size of M . We assume that the
generation process of M can be modeled by a probability
density function uλ with parameter λ. Then the vector offset
matrix M can be characterized using the following score
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(d) COMPARISON: (S1) The
company intends to pay divi-
dends from available cash flow,
(S2) the amount may vary from
quarter to quarter.

Figure 2: Examples of 2-dimensional PCA projections of word embedding offset matrixes.

function:
GMλ = ∇λ log uλ(M), (1)

where GMλ is a vector whose size is only depended on the
number of parameters in λ, not on the number of offset in
the matrix. The gradient describes the contribution of each
individual parameters to the generative process. In other
words, it describes how the parameters of the generative
model uλ should be modified to better fit the data. The
fisher kernel on these gradient is (Jaakkola, Diekhans, and
Haussler 1999):

KFK(M, M̂) = GM
′

λ F−1λ GM̂λ , (2)

where Fλ is the Fisher information matrix of uλ:

Fλ = EM∼uλ

[
GMλ G

M ′

λ

]
. (3)

Since Fλ is symmetric and positive definite, it has a
Cholesky decomposition Fλ = L′λLλ, and KFK(M, M̂)
can be rewritten as a dot-product between normalized vector
G with:

GM
λ = LλG

M
λ = Lλ∇λ log uλ(M), (4)

where GM
λ is referred to as the Fisher Vector of M .

We follow the work of (Perronnin and Dance 2007), and
choose uλ to be a Gaussian mixture model(GMM): uλ(x) =∑k
i=1 wiui(x). Thus λ = {wi, µi,Σi, 1 ≤ i ≤ K}, where

wi, µi and Σi are respectively the mixture weight, mean
vector and covariance matrix of Gaussian ui. We assume
that the covariance metrics are diagonal as any distribution
can be approximated with an arbitrary precision by a
weighted sum of Gaussian with diagonal covariance, we use
the notation σ2

i = diag(Σi)(Perronnin and Dance 2007).
The GMM uλ is trained on the whole set of embedding
offset matrix through Maximum Likelihood(ML).

We consider the gradient with respect to the mean and
the diagonal covariance matrix (the gradient with respect to
the weight parameters brings little additional information).
Let D denote the dimensionality of ot in M , let GM

µ,i be the
gradient with respect to the mean µi and GM

σ,i be the gradient

with respect to σi of Gaussian i. Mathematical derivations
lead to:

GM
µ,i =

1

N
√
wi

N∑
t=1

γt(i)

(
ot − µi
σi

)
, (5)

GM
σ,i =

1

N
√

2wi

N∑
t=1

γt(i)

[
(ot − µi)2

σ2
i

− 1

]
, (6)

where γt(i) is the soft assignment of ot to Gaussian i, which
is also known as the posterior probability or responsibility:

γt(i) =
wiui(ot)∑N
j=1 wjuj(ot)

, (7)

and where N is the size of offset matrix M , the division
and exponentiation of vectors should be understood as term-
by-term operations. The final gradient vector GM

λ is the
concatenation of the GM

µ,i and GM
σ,i vectors for i = 1, ...,K

and is therefore 2KD-dimensional.

Weighted Fisher Vector One weakness of the Fisher
Vector described above is that when training GMM, the
contributions of all the offsets in the Offset Matrix are equal.
However, since every word in one text segment has its own
weight (e.g. tf-idf), then the offset between different word
embeddings in one text segment pair should have different
weights to the relation of the pair. Based on this assumption,
each offset in the Offset Matrix has its own weight α when
training GMM, and the Offset Matrix M then becomes a
weighted Matrix Mw = {αtot, 1 ≤ t ≤ N}. With these
weighted matrices, we evaluate the parameters of GMM and
generate fisher vectors as described above, we name these
generated vectors Weighted Fisher Vector.

Experiment
We evaluated the proposed method on two datasets: the Penn
Discourse Treebank (Miltsakaki et al. 2004) and explanatory
relations in product reviews (Zhang et al. 2013).



Table 1: The performances of different approaches on the PDTB. “FV” represents our approach using Fisher Vector, and
“WFV” represents our approach using Weighted Fisher Vector. “ADD” is additive vector composition and “PWM” is point-
wise multiplicative vector composition (Mitchell and Lapata 2010), “RAE” is (Socher et al. 2011)’s recursive auto-encoder
mentioned above. CON means to use the concatenation of compositional text segment vectors as features, SUB denotes using
the subtraction of compositional text segment vectors as features.

Comparison Contingency Expansion Temporal
(Pitler, Louis, and Nenkova 2009) 21.96% 47.13% 76.42% 16.76%
(Zhou et al. 2010) 31.79% 47.16% 70.11% 20.30%
(Park and Cardie 2012) 31.32% 49.82% 79.22% 26.57%
(McKeown and Biran 2013) 25.4% 46.94% 75.87% 20.23%
(Ji and Eisenstein 2015) 35.93% 52.78% 80.02% 27.63%

ADD+CON 26.58% 40.03% 69.72% 12.03%
PWM+CON 25.01% 41.31% 66.03% 14.28%
RAE+CON 18.83% 44.49% 71.96% 13.31%
ADD+SUB 26.30% 39.52% 67.42% 11.18%
PWM+SUB 24.09% 41.56% 65.87% 11.60%
RAE+SUB 19.46% 43.69% 69.88% 12.32%
FV 29.75% 51.86% 80.50% 18.28%
WFV 30.21% 53.57% 80.90% 20.24%

Implicit Discourse Relation Detection with Penn
Discourse Treebank
Experiment Protocols The dataset we used in this work
is Penn Discourse Treebank 2.0 (Prasad et al. 2008),
which is one of the largest available annotated corpora
of discourse relations. It contains 40,600 relations, which
are manually annotated from the same 2,312 Wall Street
Journal (WSJ) articles as the Penn Treebank. We followed
the recommended section partition of PDTB 2.0, which is
to use sections 2-20 for training and sections 21-22 for
testing (Prasad et al. 2008). For comparison with the work
of Pitler et al. (2009), Zhou et al. (2010), Mckeown et
al. (2013), and Ji (2015) we trained four binary classifiers
to identify each of the top level relations. For each classifier,
we used an equal number of positive and negative samples
as training data, because each of the relations except
Expansion is infrequent (Pitler, Louis, and Nenkova 2009).
The negative samples were chosen randomly from training
sections 2-20. In our experiment, due to the high cost
of computing word embeddings, we used the embeddings
trained by us on the WSJ Corpus as well as the publicly
available embeddings provided by Collobert et al. (2011)1,
Turian et al. (2010)2, Mikolov (2012)3 and Mikolov et
al. (2013)4.

We used a 10-fold cross-validation of the training set
to select the optimal word embeddings as well as the
number of Gaussian densities in the Gaussian Mixture
Model (GMM). 300-dimensional vectors pre-trained by
Mikolov (2013) achieve the best performance. The optimal

1http://ml.nec-labs.com/senna/
2http://metaoptimize.com/projects/wordreprs/
3http://rnnlm.org/
4https://code.google.com/p/word2vec/

number of Gaussian densities in GMM is 16. As for the
weights in Weighted Fisher Vector, it is reported in the work
of Pitler et al.(2009) that the nouns, verbs and adjectives
in the pair contribute more to the detection of its relation.
In this experiment, we simply set the weight of the offset
between nouns, verbs and adjectives to 2, and the others
to 1. For the binary classifier, we trained a Random Forest
Classifier based on the Fisher Vectors.

For comparing with the proposed method, we also
conducted an experiment in which we used the other
methods to combine word embeddings of the two text
segments to compose their text segments embeddings. These
methods are widely used to capture syntactic and semantic
meanings of text segments (Mitchell and Lapata 2010). We
obtained the text segments vector from its word embeddings
by using the following methods:
• Vector Addition (ADD): It was defined as constructing

the text segment vector by simply sum the word embed-
dings in that text segment (Mitchell and Lapata 2010).

SentV ec(+) =
∑

∀ewi∈sent

ewi (8)

• Point-wise Multiplication (PWM): Mitchell and Lapata
(2010) proposed to construct the text segment vector by
using point-wise multiplication for every word embed-
ding in that text segment.

SentV ec(�) =
∏

∀ewi∈sent

ewi (9)

• Recursive Autoencoder (RAE): Socher (2011) used the
parser tree of a sentence as the basis for a RAE. The aim
is to construct a vector representation for the tree’s root
bottom-up where the leaves contain word vectors.



We then performed either concatenation or subtraction on
the two text segments embeddings to generate a new vector.
After that, we trained supervised classifiers to predict the
discourse relations based on the generated vectors.

Results The performances of the four binary classifiers
on the top level relations are shown in Table 1. The
first highlight for this table is that our approach achieved
better performance than previous methods on Contingency
and Expansion relations as well as achieved a comparable
result on Comparison and Temporal. This proves our
assumption that vector offsets between word embeddings
in each discourse segment represent the semantic and
syntactic meanings of the discourse segments. Also, setting
different weight to some important offsets can obviously
improve the performance. Furthermore, compared with
previous works (Pitler et al. (2009), Zhou et al. (2010),
etc.), which used either a lot of complex textual features
and contextual information about the two text segments
or a larger unannotated corpus to do the prediction, the
proposed approach is quite simple and elegant. We only
used the information of the two text segments themselves, no
complex features and contextual information are needed. We
do not even require parsing of the two text segments. With
so little information required, we still achieved even better
results on the same dataset than previous works did, thus
showing that our method is powerful in modeling discourse
relations. We can also observe that the performance on
temporal relation is not so good as other relations, we
believe it is mainly because the training samples of temporal
relation are much less than other relations, maybe those
samples are inadequate to train our model.

The results of using compositional text segment vectors
on the four top relations are also shown in Table 2. As
can be seen from the table, each of these compositional
methods has its own strengths and weaknesses. For example,
RAE (Socher et al. 2011) performs much better than other
compositional methods on the Contingency relation, but
it has a weaker performance on the Comparison relation.
Also, using concatenation often gets better results than
subtraction. In general, the results based on text segment
vectors are less than satisfactory, and the performance
of our approach far exceeds these results. One possible
explanation for this phenomenon is much of the word
analogy information cannot be held when constructing the
text segment vectors. It demonstrated that the proposed word
embedding offset matrix has carried as much information of
the word analogy as possible, so that it can represent the
semantic relations between two text segments.

Parameter Sensitivity Finally, we conducted another ex-
periment to show how the hyperparameters (i.e. the kind
of word embedding and the number of Gaussian densities
in GMM) affect the effectiveness of our proposed method.
In that experiment, we first fixed the number of Gaussian
densities and change the word embedding used in our
method. Then we fixed the word embedding and modified
the number of Gaussian densities so that we could see how
the hyperparameter alone affects the effectiveness of the
proposed method.
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Figure 3: The Precision and Recall on the four top level
relations of all the embeddings mentioned above. The
number of Gaussian densities is fixed to 16.

Fig. 3 shows the results of using different word embed-
dings. From the figure, we can observe that although differ-
ent embeddings were used, the points of the same relation
gathered together into four clusters which correspond to the
top four relations. In each cluster, the points are very close
to each other, which means the Precision and Recall are
almost the same under different word embeddings. Taking
a deeper look at each cluster, we observe that the skip-
gram-Google embedding get slightly better performance
than other embeddings, whereas the performance of the
Skip-Gram-WSJ and C&W embeddings were less than
satisfactory. We believe this is mainly because the Skip-
Gram-Google embedding was trained on Google News,
which is one of the largest corpora used for embedding
training, whereas the Sip-Gram-WSJ embedding was trained
by us using a corpus much smaller than all of the other
embeddings used. The C&W embedding was trained on
the Wikipedia corpus, which is quite different from the
news corpus, so it is reasonable for its unsatisfied results on
PDTB.

In summary, when fixing the number of Gaussian densi-
ties in GMM, the change of word embeddings has minor
effect on the performance of our proposed method; all of
the embeddings can achieve fairly good performance. Also,
training the word embedding on a large corpus may help
improve performance.

Fig. 4 illustrates the results via the number of Gaussian
densitiesK, which is used for Fisher kernel. From the figure,
we can find that with the increasing number of Gaussian
densities, the four curves fluctuate little. One possible
explanation for this phenomenon is once the number of
Gaussian densities is enough to model the vector offsets, this
hyperparameter will have little effect on the performance
of our proposed method. Based on the experiments given
above, we conclude that the hyperparameters for our pro-
posed method are very easy to choose; no special skills or
empirical knowledge are needed.
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Explanatory Relation in Product Reviews
The explanatory relation dataset (Zhang et al. 2013) contains
a number of reviews about digital cameras crawled from
Buzzillions5, which is a product review site and contains
more than 16 million reviews. It contains 1,137 sentences,
which are composed of 1,665 clauses. 694 clauses are
labeled subjective, and 478 clauses explain other ones.
More than 56.1% opinion expressions are explained by their
corresponding explanatory sentences. Given this dataset, the
aim is to decide whether the opinion clause and nearby
clauses hold an explanatory relation or not. To make our
results comparable to Zhang et al. (2013), we followed the
protocol they used to divide the dataset (i.e. we used 80%
of the reviews as training set and the others as test set).
All the hyperparameters are the same as we used in the last
experiment.

We illustrate the results of the proposed method and
the results achieved by Zhang et al. (2013) using other
methods in Table 2. Since we used the same training
and testing data, we listed the results reported in their
literature. From the results, we observe that the proposed
method achieved significant improvements over all of the
other previous methods. We achieved 19.00% absolute im-
provement (33.92% relative improvement) over the previous
best accuracy and 15.80% absolute improvement (24.88%
relative improvement) over the previous best F1-score. Such
dramatic improvements show that our proposed approach is
effective in modeling the discourse level relations.

In summary, we can see that the proposed method
achieved satisfactory results on both datasets, showing that
our method is not designed for a specific dataset; instead,
it has great abilities of generalization. Moreover, the hyper-
parameters used for the two datasets are also same. It shows
that the proposed method can be easily adopted for other
tasks.

Conclusions
In this work, we introduced a novel method to model
the relations between discourse level relations between
text segments. Motivated by the observation of offsets
between word embeddings, we proposed to use vector
offsets between words in the embedding space. Since the

5www.buzzillions.com

Table 2: Performance comparisons between the proposed
method and other state-of-the-art methods implemented by
Zhang et al. (2013)

Methods Accuracy F1
RAE-Subj+PDTB-Rel 28.5% 32.8%
RAE-Subj+SVM-Rel 32.4% 47.6%
MLN 56.2% 63.5%

ADD+CON 67.6% 68.7%
PWM+CON 62.3% 60.5%
RAE+CON 69.4% 68.8%
ADD+SUB 61.0% 61.5%
PWM+SUB 57.5% 58.0%
RAE+SUB 62.0% 63.9%
FV 73.4% 77.4%
WFV 75.2% 79.3%

length of text segments is different, the offsets between
word embeddings cannot be directly integrated to perform
the task. We incorporated the Fisher kernel framework to
convert a variable number of vector offsets into a fixed
length vector, and in order to incorporate the weights of
these offsets into the vector, we also propose the Weighted
Fisher Vector. To demonstrated the effectiveness of the
proposed method, we evaluated it on two different datasets.
Experimental results demonstrate that the performances of
the proposed method are better than pervious best results
and other representation methods for text segment in most
cases.
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