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Abstract

Neural word segmentation has attracted
more and more research interests for its
ability to alleviate the effort of feature en-
gineering and utilize the external resource
by the pre-trained character or word em-
beddings. In this paper, we propose a
new neural model to incorporate the word-
level information for Chinese word seg-
mentation. Unlike the previous word-
based models, our model still adopts the
framework of character-based sequence
labeling, which has advantages on both
effectiveness and efficiency at the infer-
ence stage. To utilize the word-level in-
formation, we also propose a new long
short-term memory (LSTM) architecture
over directed acyclic graph (DAG). Exper-
imental results demonstrate that our model
leads to better performances than the base-
line models.

1 Introduction

Chinese word segmentation (CWS) is a prelimi-
nary and important task for Chinese natural lan-
guage processing (NLP). Currently, the state-of-
the-art methods are based on statistical supervised
learning algorithms, which can be further divided
into character-based (Xue, 2003; Peng et al., 2004;
Zhao et al., 2006) and word-based (Andrew, 20006;
Zhang and Clark, 2007; Sun et al., 2009) meth-
ods. The character-based methods regard word
segmentation as a sequence labeling problem, and
each character is assigned a segmentation tag to
indicate its relative position inside word. It is
rather difficult to utilize the word-level features in
the character-based methods. Instead, the word-
based methods directly score the entire candidate
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M Character-base.d Other
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Xue (2003)

Zhao et al. (2006)
Zheng et al. (2013)*
Chen et al. (2015)*

Character Ma and Hinrichs (2015)*

Andrew (2006)

Zhang and Clark (2007)*
Zhang et al. (2016)*

Cai and Zhao (2016)*
Liu et al. (2016)*

Word Ours*

Table 1: Overview of the word segmentation
methods. * indicates that the model is neural-
based.

segmented word sequence, which can fully utilize
both the character-level and word-level informa-
tion (Sun, 2010).

Recently, there are several neural models ap-
plied to CWS task for their ability to minimize
the effort in feature engineering. These mod-
els are still divided into character-based (Zheng
et al., 2013; Pei et al., 2014; Chen et al., 2015;
Ma and Hinrichs, 2015; Xu and Sun, 2016; Yao
and Huang, 2016) and word-based (Cai and Zhao,
2016; Zhang et al., 2016; Liu et al., 2016) meth-
ods. Table 1 gives an overview of some represen-
tative word segmentation methods.

Although the word-based information are effec-
tive in CWS, it is nontrivial to incorporate these
information into the character-based sequence la-
beling. Existing word-based CWS methods adopt
different inference methods, such as transition-
based methods (Zhang and Clark, 2007; Zhang
et al., 2016), Semi-Markov conditional random
field (semi-CRF) (Andrew, 2006; Liu et al., 2016),
or discriminative structured learning (Cai and
Zhao, 2016). Among these methods, the number
of candidate segmentations grows exponentially
with the sequence length. Therefore, beam-search
is often used to reduce error propagation. Besides,



the maximum length of words is also constrained
(usually less than 5) to reduce the time complexity.
These two strategies usually result in an inexact
inference.

In this paper, we propose a neural-based ar-
chitecture for Chinese word segmentation, which
integrates the word-level information to the
framework of character-based sequence labeling.
Specifically, given a character sequence, we build
a directed acyclic graph (DAG) using a vocabu-
lary. Each edge in the DAG denotes that its cov-
ering subsequence is a word in the vocabulary.
Then, we propose a DAG-structured long short-
term memory (DAG-LSTM), and the input of each
position consists of the embeddings of the char-
acter and words. By using DAG-LSTM, we can
model the contextual information for each posi-
tion based on both the character-level and word-
level information. Extensive experiments on three
popular CWS datasets show that our architec-
ture achieves better performance with the original
LSTM model.

The contributions of this paper could be sum-
marized as follows.

e The proposed DAG-LSTM can effectively
integrate the word-level information for
character-based CWS.

e We propose a dropout strategy for in-
vocabulary (IV) words, so that our model
could deal with the out-of-vocabulary (OOV)
words. Thus, our model can easily incorpo-
rate an external vocabulary to boost the per-
formance even without the embeddings of the
OOV words.

2 Long Short-Term Memory Networks
for Chinese Word Segmentation

Chinese word segmentation task is usually re-
garded as a character based sequence labeling
problem (Zheng et al., 2013; Pei et al., 2014; Ma
and Hinrichs, 2015; Xu and Sun, 2016; Yao and
Huang, 2016; Cai and Zhao, 2016; Zhang et al.,
2016). Specifically, each character in a sentence
is labeled as one of 7 = {B, M, E, S}, indicat-
ing the begin, middle, end of a word, or a word
with single character. In this section, we will in-
troduce the conventional long short-term memory
networks (Chen et al., 2015) for character based
Chinese word segmentation task.

Figure 1 gives a general architecture of the neu-
ral CWS, which could be characterized by three
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Figure 1: General neural architecture for character
based Chinese word segmentation task.
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Figure 2: Uni-gram and bi-gram embeddings.

components: (1) an embedding layer; (2) a LSTM
layer and (3) an inference layer.

2.1 Embedding Layer

In the neural models, the first step is to map
discrete language symbols to distributed inputs,
which is usually a concatenation operation on
embeddings in different granularities. Specifi-
cally, given a sequence with n characters X =
{x1,- -+ ,zy}, the distributed input z; for each po-
sition ¢ is usually assigned with a uni-gram em-
bedding or a bi-gram embedding.

Uni-gram Embedding Uni-gram embedding
input z; only uses the embedding of the charac-
ter x; as shown in Figure 2a. Specifically, z; could
be expressed as:

z; = €y, (1

where e, € R is derived by a looking up oper-
ation in a embedding matrix E € RVwinlxde g,



is a hyper-parameter indicating the size of the em-
bedding. Viain is the vocabulary set of the train
set.

Bi-gram Embedding Besides the uni-gram
character embeddings, the bi-gram character em-
beddings are often used. As previous work (Pei
et al., 2014; Chen et al., 2015) reports, the bi-
gram embeddings can significantly boost the per-
formance of CWS. The bi-gram embedding input
of each z; additionally considers the embedding of
the bi-gram compositions at ¢-th position as shown
in Figure 2b. Specifically, z; could be expressed
as:

z; = el’i @ e(l‘ifhl‘i) S e(l‘i,l‘i+1)7 (2)

where & is a concatenation operation. (x;_1, ;)
indicates the bi-gram unit composed of two con-
secutive characters x;—; and xz;. Notably, if
(zi—1,2;) is not in Vyain, we will use a special
symbol “;O0V,;” (indicating a out-of-vocabulary
term) instead.

2.2 LSTM Layer

Long short-term memory network (LSTM)
(Hochreiter and Schmidhuber, 1997) is a typical
type of recurrent neural network (RNN) (Elman,
1990), and specifically addresses the issue of
learning long-term dependencies and gradient
vanishing problem. Specifically, LSTM, with
input gate i, output gate o, forget gate f and
memory cell ¢, could be expressed as:

i, =oc(Wz + UDn,_, + b)), (3)
0; = o(W®z; + U®h;_; + b)), (4
f; = o(Wz; + UDn;_; + D), (5)
& =W+ U%n, 1 +b), (6
¢ =¢ Oij+ci10f; (7)
h; = 0; ® ¢(cy), (®)

where W, € R(detd)x4dn and b, ¢ R are
trainable parameters. dj, is a hyper-parameter, in-
dicating the hidden state size. Function o(-) and
¢(+) are sigmoid and tanh functions respectively.

Bi-LSTM In order to incorporate information
from both sides of sequence, we use bi-directional
LSTM (Bi-LSTM) with forward and backward di-
rections. Specifically, each Bi-LSTM unit can be
expressed as:

h;= b, ® h; ©)

_>
where h ; and ﬁl are the hidden states at ¢-th posi-
tion of the forward and backward LSTMs respec-
tively. & is the concatenation operation.

2.3 Inference Layer

In inference layer, we introduced the transition
score A;; for measuring the possibility of jump-
ing from tag i € T totag j € T (Collobert et al.,
2011; Zheng et al., 2013; Pei et al., 2014). The
sentence-level prediction score is the sum of the
tag transition score and the network tagging score.

Specifically, given a input sentence X =
{z1,--- ,z,} with a predicted tag sequence Y =
{y1,...,yn}, the sentence-level prediction score
s(X,Y; O) could be calculated as:

n

S(X, Y; @> = Z (Ayi—lyi + f(yz)) s

i=1

10)

where O indicates all trainable parameters of our
model. f(y;) is the network tagging score, which
could be formalized as:

f(yi) = Wsh; + by, (11)

where W, € RI7T1%dn and b, € RI71.

3 Building DAG for Sequence

DAG is short for directed acyclic graph. Actually,
in the preprocess phase, we could build a DAG for
every sequence in the corpus (including the train
set, development set and test set) based on the vo-
cabulary Vyin of train set. Figure 3 gives an illus-
tration of the DAG of a sequence. Each edge over
nodes in the graph indicates that there is a word in
Virain- Notably, the forward and backward DAGs
are asymmetric in our model as shown in Figure 3.

In order to build DAG more efficiently, we
adopt Aho Corasick algorithm (Aho and Corasick,
1975) for fast DAG construction. Firstly, an au-
tomata is built using the given vocabulary Viin.
Thus, a DAG can be built for a character sequence
by the built automata in O(n).

4 DAG-LSTM for Chinese Word
Segmentation

In order to integrate the information from the
word level and character level simultaneously,
we proposed two types of DAG-structured long
short-term memory (DAG-LSTM) neural net-
works upon the built DAG for CWS task: the
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Figure 3: Building DAG for a sequence. The nodes in the DAG are indexed from 1 to 14, and the edges
in the DAG are indexed from a to u. Each edge is associated with a word in train set vocabulary Viin.
For instance, the edge e in the forward DAG is associated with the word “ (independent)”, while the edge
f in the backward DAG is associated with the word “ (mutual benefit)”. Here, “iBOS;” and “;EOS;”
are two special symbols indicating the begin and the end of a sentence respectively.

weight sharing model and the weight indepen-
dent model. The difference between them is that
whether the associated weight matrix is shared
when various inputs enter to the DAG-LSTM.
These two models are extensions of the tree-
structured LSTMs (Tai et al., 2015). It is worth
noting that Zhu et al. (2016) also proposed a DAG-
LSTM model, which adopts a different binarized
merging operation.

4.1 Model-I: Weight Sharing DAG-LSTM

Given the DAG of each sequence as shown in Fig-
ure 3, we build DAG-LSTM for CWS task upon
the DAG. Since the algorithm of forward DAG-
LSTM is the same with the backward one, we only
describe the forward one here.

In DAG-LSTM, the information flow of LSTM
separate and merge along with the structure of the
DAG of the sequence. Specifically, for each po-
sition 7, we will take all words ending with the
i-th character x; into account. Thus, we will de-
rive a word set {z;_;y1.i}icr, for i-th position,
where L; is a length set. For simplicity, we de-
fine z;; = ey ,,,, € R?%. All word lengths
| € L; should make sure that z;_;y1.; € Viin.
Notably, no “;O0V;” terms will occur in DAG-
LSTMs. Table 2 shows the details of data flow of
the forward DAG-LSTM.

Formally, the the weight sharing DAG-LSTMs
(WS-DAG-LSTMs) could be further derived as:

Zi=Y zy, hi=)» hiy (12)
lGLi ZGLZ
i; = o(WWz; + UDn,; + bW), (13)

Target L Edge ID | PreState | Input
h, & - - -
ho {1} a h, €z,

€ h, €35

hs {1,2,3} f h3 €15
h4 (S

h e .

h 1.2 S 11 12:13
13 { > } t 1,112 €15
h14 {1} u h13 €y

Table 2: Information flow of the forward DAG-
LSTM for the given example in Figure 3. Here,
the initial state h; = 0.

0; = o(W©z + U h; + b)), (14)

fi=o(WPz,; + UOn;,_ + @), (15)

& =Wz +U®h, + @),  (16)

ci=¢ O+ Zcilefi,la a7
IEL;

h; = 0; © ¢(c;). (18)

4.2 Model-II: Weight Independent
DAG-LSTM

Since word length is a crucial information, we fur-
ther take the word length into account. Specifi-
cally, the weight independent DAG-LSTMs (WI-
DAG-LSTMs) could be expressed as:

i =0(>. Wz, + UPh +b®), (19)
lel;
0; = U(Z Wl(o)zi,l + Ul(o)hi—l +b©),
leL;
(20)



£, = oW, + UPn,_ +p®), @1
& =63 W9+ Uhi +b©), 22)

leL;
c, =¢ Oi; + Z ci1 ©f, (23)
lel;
h; = 0; © ¢(c;). (24)

Notably, we will map all W; and U; to W;__ and
U, respectively when [ > [ax, which could al-
leviate the problem of data sparsity. Here, /pax 1S
a hyper-parameter.

5 Training Strategy

5.1 Max-Margin criterion

Given a train set D = {(X,,, Y,5)}M_, | the reg-
ularized objective function J(©) could be ex-

pressed as:

1 A
J(©) = — In(©)+ =03, @5
© - ¥ L©)+5lel o)
(X, Y2 )ED
where X,, = {x1,---,z,} and Y =
{y3,...,y’} are training character sequence and

corresponding ground truth labels respectively.
The loss function of each training example /,,,(©)
could be formalized as:

L (©) = max (0, s(Xym, Yim; ©)+
A Vi) = $(Xm, Y3 ©)), (26

where Y, = {91,...,9n} is the the predicted
labels of m-th training case, and is derived by a
Viterbi algorithm:

Y., = argmax s(X,Y;0), 27
YeTn

where T = {B, M, E, S}. The structured margin
loss A(Y,:,Y,,) is defined as:

AV, Vi) =Y nl{yi # 6}, (28)
=1

where n is the length of m-th training example and
7 is a discount parameter.

In this paper, we adopt AdaGrad (Duchi et al.,
2011) with minibatchs to minimize the objective

J(O).

5.2 Dropout & IV Word Dropout

Dropout is one of prevalent methods to avoid
overfitting in neural networks (Srivastava et al.,
2014) during the training phase. In this paper, we
not only employ the conventional dropout strat-
egy, but also propose a IV (in-vocabulary) word
dropout strategy for DAG-LSTM. The conven-
tional dropout strategy randomly drops out some
neurons in the network with a fixed probability p
(dropout rate). The incoming and outgoing con-
nections of those dropped neurons will be tem-
porarily removed. Unlike conventional dropout,
the proposed IV word dropout strategy randomly
drops out the input information of some edges
(NOT drop edges) in the DAG with a fixed prob-
ability prv (IV word dropout rate). Specifically,
the words associated with the chosen edges will be
temporarily mapped to “;O0V;” (a special sym-
bol indicating the unknown word). For the IV
word dropout strategy, we only focus on words
with multiple characters, and we reserve all single
characters during training.

There are two main advantages of IV word
dropout strategy. (1) Since “;O0V;” words will
not be constructed in the DAG, the original DAG-
LSTM could not deal with the OOV word in test
phase. By using IV word dropout strategy, DAG-
LSTM could easily exploit the OOV words in
an external vocabulary to boost the performance.
Specifically, the OOV words will be mapped to the
“100V” symbol when testing. (2) The IV word
dropout strategy will alleviate the overfitting prob-
lem as well.

A Special Case Notably, the proposed IV word
dropout strategy has a very special case when the
IV word dropout rate pry = 100% (drops all).
In this case, only the embeddings of the single
characters (as well as some special symbols, like
“100V;”, “B0OS;”, etc.) will be reserved and
optimized in the training phase. And in the test
phase, all the words with multiple characters will
be mapped to “;O0V;”. However, the DAGs for
the train set, development set and test set will not
be altered.

5.3 Hyper-Parameter Configuration

Table 3 gives the hyper-parameter settings. Specif-
ically, we employ conventional dropout strategy
after embedding layer with dropout rate p = 20%
(keeping 80% inputs). According to the results on
Figure 4, the IV word dropout rate is better set to



Character embedding size | d. = 100
Initial learning rate a=02
Loss weight coefficient | A = 0.05
Margin loss discount n =02
LSTM dimensionality dn = 150
Conventional dropout rate | p = 20%

IV word dropout rate | prv = 50%

Batch size 128

Table 3: Configurations of Hyper-parameters.
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Figure 4: Performance of using different IV word
dropout rate pry on DAG-LSTM (Model-II) on the
development set of MSRA dataset. pry denotes
how much drops.

prv = 50% (with 50% input kept).

For initialization, all parameters is drawn from
a uniform distribution (—0.05,0.05). Following
previous works (Chen et al., 2015; Pei et al.,
2014), all experiments including baseline results
use the pre-tarined embeddings! for initialization.

6 Experiments

6.1 Datasets

We use three prevalent datasets, MSRA, CTB and
AS, to evaluate our model. The MSRA and AS are

'The embeddings are pre-trained on Chinese Wikipedia
corpus with word2vec toolkit (Mikolov et al., 2013)

MSRA AS CTB

#sent 86.9K | 709.0K | 23.4K

Train set | #token 2.4M 5.4M 0.6M
#char 4.1M 8.4M 1.IM

#sent 4.0K 14.4K 2.1K

Test set | #token 0.1IM 0.1IM 0.1IM
#char 0.2M 0.2M 0.1M

OOV Rate 2.6% 4.3% 5.6%

Table 4: Details of three datasets. #sent, #token
and #char indicate the numbers of sentences, to-
kens and characters respectively. OOV Rate is the
out-of-vocabulary rate, indicating how much per-
centage of words are there only appearing in the
test set.

provided by SIGHAN2005 (Emerson, 2005), and
CTB is from SIGHAN2008 (Jin and Chen, 2008).
The details of the three datasets are shown in Ta-
ble 4. We use 10% data of shuffled train set as
development set for all datasets.

6.2 Overall Results

Table 5 gives the overall results of our model on
test sets of three CWS datasets, which consists of
three main blocks.

The First Block The first main block contains
three sub-blocks: two baseline models, DAG-
LSTM and DAG-LSTM with IV word dropout
strategy.

(1) The first sub-block contains two baselines:
Bi-LSTM models using uni-gram and bi-gram re-
spectively (mentioned in Section 2.1 and Sec-
tion 2.1). As previous work (Pei et al., 2014;
Chen et al., 2015) reports, the performance can
be significantly boosted by using bi-gram features,
since the bi-gram model additionally exploit the
information of words with two characters. As
shown in Table 5, the model with bi-gram feature
boosts +1.57%, +1.74% and +1.41% on F value
on MSRA, AS and CTB respectively.

(2) The second sub-block gives the results of
the proposed DAG-LSTM model, where Model-
I indicates the weight sharing DAG-LSTM (WS-
DAG-LSTM) (Section 4.1) and Model-II indicates
the weight independent DAG-LSTM (WI-DAG-
LSTM) (Section 4.2). By using DAG-LSTM, we
obtain significant improvement on performance.
As shown in Table 5, the DAG-LSTM model ob-
tains 96.08%, 95.47% and 95.62% on F value on
MSRA, AS and CTB respectively. Compared to
bi-gram model, the performance boosts +0.37%,
+0.74% and +0.40% respectively, since the pro-
posed DAG-LSTM model benefit from both the
word level (not only the words with two charac-
ters) and the character level information. We could
also observe that the performance of Model-I and
Model-II is comparable. Strictly speaking, the per-
formance of Model-I is slight better than Model-
II. However, the number of trainable parameters
of Model-I is much less than Model-II, since the
Model-I shares the weight matrix over various in-
put. It might be caused by the problem of overfit-
ting, so that Model-1II performances poorly.

(3) The third sub-block shows the effectiveness
of the proposed IV word dropout strategy on the
proposed DAG-LSTM model. As we can see, the



MSRA

AS CTB

Models P TR | F OOV P [ R | F [OOV] P | R | F [OOV
Baselines

Uni-gram 94.19194.08 | 94.14 [ 65.33{92.13 | 92.79 | 92.46 | 69.57 | 93.68 | 93.94 | 93.81 | 75.15
Bi-gram 95.59195.82[95.71 | 65.74 | 93.64 | 94.77 | 94.20 | 70.07 | 95.17 | 95.26 | 95.22 | 75.62
DAG-LSTM

Model-I 95.98 196.18 [ 96.08 | 65.15|94.42 | 95.47 | 94.94 | 68.38 | 95.5395.71|95.62 | 77.09
Model-IT 96.01 | 96.13 | 96.07 | 67.65 | 94.54 | 95.26 | 94.90 | 70.70 | 95.56 | 95.60 | 95.58 | 76.49
DAG-LSTM with IV word dropout strategy (IV word dropout rate pry = 50%)

Model-I 95.96 [96.35[96.15 | 64.51 | 94.31 | 95.58 | 94.94 | 67.38 | 95.52[95.51 | 95.52|77.16
Model-II 96.40 | 96.53 | 96.47 | 68.54 | 94.86 | 95.49 | 95.17 | 71.33 | 95.55 | 95.73 | 95.64 | 76.96
The special case: DAG-LSTM with IV word dropout rate pry = 100% (drops all)

Model-I 94.59 194.66 | 94.62 | 62.64 | 94.41 | 95.05 | 94.73 | 73.09 | 95.22 [ 95.16 | 95.19 | 78.42
Model-IT 94.86 | 94.94 | 94.90 | 62.27 | 93.87 | 94.80 | 94.33 | 72.52 | 95.30 | 95.49 | 95.39 | 77.59
Using the vocabulary of the test set Ve
Model-I 96.88 [ 96.83 | 96.86 | 74.26 | 96.36 | 96.67 | 96.52 | 82.17 | 96.45 | 96.13 | 96.29 | 85.95
Model-II 97.35]96.88 | 97.11 | 82.10 | 96.77 | 96.66 | 96.71 | 85.80 | 96.86 | 96.44 | 96.65 | 88.10

Table 5: Results of the proposed models on test sets of three datasets. P, R, F and OOV indicate precision,
recall, F value and out-of-vocabulary recall rate respectively. The maximum F values in each block is

highlighted for each dataset.

performance further boosts. Besides, by using the
IV word dropout strategy, Model-II boost signifi-
cantly, and outperforms Model-I, whereas the ef-
fects of the IV word dropout strategy on Model-I is
modest. It shows that the IV word dropout strategy
alleviates the problem of overfitting of Model-II.

The Second Block The second main block
shows the results of the special case where IV
word dropout rate pry = 100% (mentioned in Sec-
tion 5.2). According to the results of the special
case, we could observe that the performance on
all datasets significantly outperforms the baseline
LSTM model with uni-gram feature (from 94.14%
to 94.90%, from 92.46% to 94.73% and from
93.81% to 95.39% on F value on MSRA, AS and
CTB respectively). Moreover, the performance
outperforms the bi-gram model on AS and CTB
datasets as well. It shows that the proposed DAG-
LSTM could well model the word level informa-
tion by only using the information “whether there
is a word” instead of “what the word is there”.
In an other word, DAG-LSTM could also perform
well when only character embeddings (as well as
some special symbols, like “;O0V;”, “iBOS;”,
etc.) are available (NO embeddings of words with
multiple characters).

The Third Block The experimental settings of
the third main block are the same with the third
sub-block of the first main block (using IV word
dropout strategy and pry = 50%), but addition-
ally exploit the vocabulary of the test set Vie.
As shown in Table 4, the OOV rates of three

datasets are all very small, which means that the
overlap of Viest and Vi, 1s significant, and very
few words only occur in the test set. However,
the performance is significantly boosted by only
introducing 2.6%, 4.3% and 5.6% more words
in vocabulary on MSRA, AS and CTB datasets
respectively. Compared with the results of the
third sub-block in the first main block, the perfor-
mance boosts +0.64%, +1.54% and +1.01% on F
value on MSRA, AS and CTB respectively, and
the OOV recall rate boosts +13.56%, +14.47%
and +11.14% respectively. Notably, the addi-
tionally imported words have no trained embed-
dings and will be mapped to “;O0V;” symbol for
testing. It shows that the proposed DAG-LSTM
model could perfectly exploit the external vocab-
ulary without re-training, whereas it is non-trivial
for previous models to exploit an external vocabu-
lary. Concretely, the generalization ability of most
of previous models are modest. Since the out-of-
vocabulary words do not appear in the train set,
they cannot exploit external vocabularies even if
they re-train on the train set. Therefore, when
we are going to use a trained segmenter to seg-
ment some corpus with large mount of out-of-
vocabulary words, such as patent and medical doc-
uments, the proposed DAG-LSTM model could
obtain a great boost by incorporating an external
dictionary of professional terms.

6.3 Effects of Vocabulary

We also investigate the effects of vocabulary to the
proposed DAG-LSTM model. The vocabulary is



MSRA

Models P | R | F [OOV
Baselines

Uni-gram 94.19 [94.08[94.14]65.33

Bi-gram 95.59|95.82|95.71 | 65.74

DAG-LSTM with IV word dropout strategy
Max word length =194.19 | 94.08 | 94.14 | 65.33
Max word length =2 | 95.68 | 95.81 | 95.74 | 65.19
Max word length =3 | 95.78 | 96.01 | 95.89 | 65.12
Max word length =4 | 96.21 | 96.31 | 96.26 | 67.34

All words 96.40 | 96.53 | 96.47 | 68.54

Table 6: Effects of vocabulary of DAG-LSTM
(Model-II with IV word dropout strategy) on the
test set of MSRA dataset. The maximum values
are highlighted for each colunm.

extracted from gold segmentation of the train set
for each dataset, which is given as a part of corpus.
Table 6 gives the results of DAG-LSTM (Model-
IT) with IV word dropout rate pry = 50% (the
same configuration with the third sub-block of the
third main block in Table 5 except the vocabulary)
on the test set of MSRA dataset. We experiment
the cases when we only keep partial words of the
given vocabulary, providing words whose lengths
are not greater than a given “Max word length”.
As shown in Table 6, we tries to set the max word
length from 1 to 4, and we also report the perfor-
mance of DAG-LSTM using the whole vocabulary
(whose results is the same with Model-II in the
third sub-block of the first main block in Table 5).
As we can see in Table 6, the performance boosts
gradually when we exploit much more words of
the given vocabulary, and the model performances
best when the whole vocabulary is employed. Spe-
cially, the results of the case (Max word length
= 1) is the same with unigram model, since they
are really the same model and the unigram model
could be viewed as a special case of the proposed
DAG-LSTM model. Moreover, we could observe
that the case (Max word length = 2) outperforms
the bigram model, since we additionally incorpo-
rate the long term information through the DAG-
LSTM.

6.4 Case Study

Table 7 gives two cases. The first one is from the
1521-th example in the test set of CTB and the
secode one is from the 2626-th example in the test
set of MSRA. The baselines in two cases all denote
the Bi-LSTM model with bigram feature.

(1) In the first case, our model is DAG-LSTM
with IV word dropout strategy. Since “adulthood”

[ID] Models [ Sentences |
5 Gold The first thing he did in gdulthood.
- Al | FSCEE | T | ) B | B — A |
2 | Baseline TR [ 23— R | F
@) Ours TR W W ZR— R F
3 Gold Monthly hedging subsidy rate calculation.
& ,‘ﬁJJH{HMfI{MIﬁ
< | Baseline | /T [ TRTH [T £ [ KT
7% Ours ilHHﬂ"IUuH?\ﬁ'ﬁ
= [Ours + Vs | 9H | TRAE | WA | 1T

Table 7: Case Study.

is an in-vocabulary (IV) word, our model could
segment it corrected by utilizing the word infor-
mation via DAG-LSTM.

(2) In the second case, we additionally use the
vocabulary of the test set Vieg to build DAG. Here,
“subsidy” is an IV word, and “ subsidy rate” is an
out-of-vocabulary (OOV) word. It shows that the
proposed DAG-LSTM model could benefit from a
given vocabulary to improve the performance.

7 Related Work

Chinese word segmentation has been studied with
considerable efforts in the NLP community. Spe-
cific to the word-based CWS, some pioneer-
ing work adopts Semi-Markov CRF (Andrew,
2006) or transition-based model (Zhang and Clark,
2007). Recently, several neural models are pro-
posed to utilize the word-level information.

Cai and Zhao (2016) formalize word segmen-
tation as a direct structured learning procedure.
Specifically, they employ a gated combination
neural network over characters and a LSTM over
words to calculate the score for each candidate
segmentation.

Zhang et al. (2016) propose a neural model
to utilize the word-level information under the
transition-based framework (Zhang and Clark,
2007). Their model exploits not only character
embeddings as previous work does, but also word
embeddings pre-trained from large scale corpus.

Liu et al. (2016) follow the work of (Andrew,
2006) and use a semi-CRF taking segment-level
embeddings as input.

All these word-based CWS are not character
based sequence labeling. Their inference are inex-
act with the beam-search, and they are constrained
by the word length.



8 Conclusion

In this paper, we propose a character-based model,
DAG-LSTM, for neural word segmentation to in-
corporate the word-level information. Our method
can further boost the performance of CWS by us-
ing an external vocabulary, which is essential in
practice. Experiments show that our proposed
model outperforms the baseline methods on three
popular benchmarks.
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