
Deformable Stacked Structure for Named Entity Recognition

Shuyang Cao and Xipeng Qiu and Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China
{caosy14,xpqiu,xjhuang}@fudan.edu.cn

Abstract

Neural architecture for named entity recognition has achieved
great success in the field of natural language processing.
Currently, the dominating architecture consists of a bi-
directional recurrent neural network (RNN) as the encoder
and a conditional random field (CRF) as the decoder. In
this paper, we propose a deformable stacked structure for
named entity recognition, in which the connections between
two adjacent layers are dynamically established. We evaluate
the deformable stacked structure by adapting it to different
layers. Our model achieves the state-of-the-art performances
on the OntoNotes dataset.

Introduction
Named entity recognition(NER) is a subtask of sequence
labeling. It is similar to other sequence labeling tasks
considering its working procedure that is assigning a cer-
tain label to each token of a sequence. But unlike part-
of-speech(POS) tagging and other sequence labeling task
evaluated on accuracy, the performance of an NER system is
evaluated on the whole named entity using precision, recall,
and f1 score. Thus, the output of an NER system at each
position is not independent with each other and much related
to its neighboring positions. The most common assumption
of sequence labeling is the Markov property that the choice
of label for a particular token is directly dependent only on
the immediately adjacent labels; hence the labels of all the
tokens in a sequence form a Markov chain. Therefore, the
widely-used statistical models for sequence labeling involve
hidden Markov model (HMM) (Rabiner and Juang 1986),
maximum entropy Markov model (MEMM) (McCallum,
Freitag, and Pereira 2000) and conditional random field
(CRF) (Lafferty, McCallum, and Pereira 2001).

In recent years, neural network architectures for NER
(Huang, Xu, and Yu 2015; Ma and Hovy 2016; Strubell et
al. 2017) are proposed to reduce the efforts of feature engi-
neering and the model complexity and have achieved great
success. Currently, the dominative neural NER architecture
consists of a bi-directional recurrent neural network (RNN)
as the encoder and a conditional random field (CRF) as the
decoder (Huang, Xu, and Yu 2015). The RNN encoder can
effectively extract the context-aware features for each token,
avoiding the cost of manually designing features.

Despite of their success, the network architecture of
the encoder still need be manually designed for different
tasks and lacks flexibility. Due to the inherent hierarchical
structure of natural language, the crucial information for
a token could appear in a changeable position. Taking the
following NER instance for example, there are two entity
mentions in the following sentence,

He bought 30 shares of Acme in 2006.
For the token “2006”, its self-information is enough to
decide its entity type. But for the token “Acme”, the informa-
tion from its neighbour “shares” could be more important.
Since the position of the crucial information for each token
is different, the current rigid network architecture heavily
depends on the ability of RNNs to capture the context
information.

In this paper, we propose a deformable stacked structure
to flexibly choose the most informative features as input.
Unlike the vanilla stacked structure, the connections be-
tween two adjacent layers are dynamically constructed. The
input of each position in the upper layer is dynamically
chosen from the lower layer, instead of a fixed position.
Specifically, we introduce a dynamical offset to indicate
the input’s position. The offsets are dynamically computed
according to the current hidden states. To make the whole
neural network end-to-end trainable, we further propose an
approximate solution to use a continuous offset to softly
select the inputs via a bilinear interpolation, instead of the
exact discrete offset.

The contributions of the paper can be summarized as
follows.

1. We propose a deformable stacked structure, whose stack-
ing connections are dynamically determined, instead of
in a pre-defined way. The deformable stacked way can
effectively alleviate the pressure of RNNs for collecting
the context information.

2. We also propose an approximate strategy to softly change
the connections, which makes the whole neural network
differentiable and end-to-end trainable.

3. Compared to the models with rigid network architecture,
our model is more flexible and suitable for named entity
recognition tasks and achieves the state-of-the-art per-
formances for named entity recognition on OntoNotes
dataset.

ar
X

iv
:1

80
9.

08
73

0v
2

 [
cs

.C
L

]
 2

8
Se

p
20

18

Input

Embedding

Encoding

Decoding

T1

T2

T3

T4

y3y2y1 y4

x4x1 x2 x3

Forward

Backward

Figure 1: General neural architecture for named entity
recognition.

General Neural Architecture for Named
Entity Recognition

Given a sequence with n tokens X = {x1, . . . , xn}, the aim
of named entity recognition is to figure out the ground truth
of labels Y ∗ = {y∗1 , . . . , y∗n}:

Y ∗ = arg max
Y ∈T n

p(Y |X), (1)

where T is the target set.
There are lots of prevalent methods to solve named entity

recognition problem such as maximum entropy Markov
model (MEMM), conditional random fields (CRF), etc.
Recently, neural models are widely applied to named entity
recognition for their ability to minimize the effort in feature
engineering (Huang, Xu, and Yu 2015; Ma and Hovy 2016).
Moreover, neural models also benefit from the distributed
representations, which can enhance the generalization capa-
bilities with the pre-trained word embeddings on the large-
scale un-annotated corpus.

The general architecture of neural named entity recog-
nition could be characterized by three components: (1) an
embedding layer; (2) encoding layers consisting of several
classical neural networks and (3) a decoding layer. The
role of encoding layers is to extract features, which could
be either convolution neural network or recurrent neural
network. In this paper, we adopt the bidirectional long-
short-term-memory (BiLSTM) neural networks followed by
a CRF as decoding layer. Figure 1 illustrates the general
architecture.

Embedding Layer
To represent discrete tokens as distributed vectors, the first
step is usually to map them to distributed embedding vec-
tors. Formally, we lookup embedding vector from embed-
ding matrix for each token xi as exi

∈ Rde , where de is a
hyper-parameter indicating the size of embedding.

Encoding Layers
To incorporate information from both sides of sequence,
we use bi-directional LSTM with forward and backward
directions. Notably, the parameters of two LSTMs with
different orientations are independent. The update of each
hidden state can be written precisely as follows:

hi =
−→
h i ⊕

←−
h i, (2)

= BiLSTM(ex1:n , i, θ), (3)

where
−→
h i and

←−
h i are the hidden states at position i of the

forward and backward LSTMs respectively; ⊕ is concate-
nation operation; θ denotes all the parameters in BiLSTM
model.

Decoding Layer
After extracting features, we employ a conditional random
fields (CRF) layer to inference tags. In CRF layer, p(Y |X)
in Eq (1) could be formalized as:

p(Y |X) =
Ψ(Y |X)∑

Y ′∈T n Ψ(Y ′|X)
. (4)

Here, Ψ(Y |X) is the potential function, and we only con-
sider interactions between two successive labels (first order
linear chain CRFs):

Ψ(Y |X) =

n∏
i=2

ψ(X, i, yi−1, yi), (5)

ψ(x, i, y′, y) = exp(s(X, i)y + by′y), (6)

where by′y ∈ R is transition parameter, indicating how
possible a label y′ will transfer to another label y. Score
function s(X, i) ∈ R|T | assigns score for each label on
tagging the i-th character:

s(X, i) = W>
s hi + bs, (7)

where hi is the hidden state of BiLSTM at position i; Ws ∈
Rdh×|T | and bs ∈ R|T | are trainable parameters.

At test phase, the Viterbi algorithm is employed to decode
the best target sequence in polynomial time complexity.

Deformable Stacked Structure
The critical factor of neural named entity recognition models
is the encoding layer, whose role is to extract useful features
to judge the label of each token. To better model the complex
compositional features, we could increase the depth of
neural network by stacking the recurrent encoding layers.

h
(l+1)
i−2 h

(l+1)
i−1 h

(l+1)
i h

(l+1)
i+1 h

(l+1)
i+2

h
(l)
i−2 h

(l)
i−1 h

(l)
i h

(l)
i+1 h

(l)
i+2

(a) Vanilla stacked structure

h
(l+1)
i−2 h

(l+1)
i−1 h

(l+1)
i h

(l+1)
i+1 h

(l+1)
i+2

h
(l)
i−2 h

(l)
i−1 h

(l)
i h

(l)
i+1 h

(l)
i+2

(b) Deformable stacked structure

Figure 2: Two ways to stack layers. The dashed lines denote
the connections are dynamically changed.

Vanilla Stacked Structure A conventional way to stack
layers is to take the output of the lower layer as the input of
upper layer at each position (Pascanu et al. 2013). For each
position i at (l + 1)-th layer, its input is taken from position
i at l-th layer.

h(l+1)
i = f(h(l)

i , θ(l+1)) (8)

where f is a non-linear function.
Despite being successful for NER, the vanilla stacked

structure has a limitation of the fixed geometric structures.
The stacking structures are manually designed and lack
flexibility.

Deformable Stacked Structure Due to the inherently
hierarchical structure of natural language, the crucial infor-
mation for a token could appear in a changeable position.
As usually seen in NER, while in some case the information
of a token itself is enough to decide its entity type, in
another case the information of its neighbors could be more
important.

To flexibly capture the most informative features, we
propose a deformable stacked structure to choose the input’s
position from the lower layers dynamically. For each posi-
tion i at (l+1)-th layer, its input is taken from position i+o
at (l)-th layer.

h(l+1)
i = f(h(l)

i+o, θ
(l+1)) (9)

where o is a offset, o ∈ Z.
The offsets o is predicted by an extra module based on the

hidden states of the lower layers.
We can adapt deformable stacked structure between dif-

ferent layers, which we will further explain in the experi-
ment section.

Figure 2 gives the comparison of two different stacked
structure.

Differentiable Deformable Stacked Structure
In our proposed deformable stacked structure, the index
of the lower layer is discrete, which results in a non-
differentiable network. Although we can use reinforcement

h
(l+1)
i−1 h

(l+1)
i h

(l+1)
i+1 h

(l+1)
i+2

h
(l)
i−1 h

(l)
i h

(l)
i+1 h

(l)
i+2

f(·) · · · · ·
offsets

z
(l+1)
i

�

Figure 3: A differentiable implementation of deformable
stacked structure. f(·) is defined by Eq (10), � denotes the
bilinear interpolation.

learning to learn the parameters, in this paper, we propose
a differentiable variant to utilize the strengths of back-
prorogation of the neural network.

Inspired by (Dai et al. 2017), we use bilinear interpolation
to replace the exact discrete index. Figure 3 shows the
architecture of deformable stack.

Offset Learning Instead of a discrete offset, we use a
continuous offset to make the whole network to be differ-
entiable. The offset is calculated by a simple function. The
offset at the position i can be given as:

o
(l)
i = vTh(l)

i , (10)

where v ∈ Rd is the parameter vector, h(l)
i ∈ Rd is the

hidden states at position i of the (l)-th layer.

Deformable Input To bridge the continuous offset and
discrete position, we apply bilinear interpolation to select
the inputs from the lower layer softly.

For each position i at (l + 1)-th layer, its input z(l+1)
i can

be given as:

z
(l+1)
i =

n∑
j=1

g(i+ o
(l)
i , j) · h(l)

j (11)

where g(i+ o
(l)
i , j) is a bilinear interpolation kernel and can

be given as:

g(i+ o
(l)
i , j) = max(0, 1− |i+ o

(l)
i − j|), (12)

thus {g(i + o
(l)
i , j)}nj=1 can be regarded as a mask vector

which has two non-zero elements at most.
For example, assuming that the length of input sequence

is 5, and the current position is 2, a continuous offset o = 1.2
gives the mask vector

g = [0, 0, 0.8, 0.2, 0]. (13)

By the above strategy, we can make the whole neural net-
work to be differentiable, which can be end-to-end trained
efficiently.

Multi-Offset Extension
To make the input of each recurrent layer more flexible,
we can allow it to choose information from the multiple
positions in the lower layer.

Therefore, a simple extension of our model is the multi-
offset deformable structure, which allows the model to
utilize the information at different positions jointly.

In multi-offset extension, we can predict k offsets at
position i,

o
(l)
i = V h(l)

i , (14)

where o(l)
i ∈ Rk is a vector consisting of k offsets, and V ∈

Rk×d is the parameter matrix.
With k offsets, we can obtain k deformable inputs

z
(l+1)
i1 , z

(l+1)
i2 , · · · , z(l+1)

ik via bilinear interpolation. Then
we concatenate these inputs to get the final input of position
i to the next layer.

z
(l+1)
i = z

(l+1)
i1 ⊕ z

(l+1)
i2 ⊕ · · · ⊕ z

(l+1)
ik , (15)

where ⊕ indicates the concatenation operation.

Wide-Window Extension
Another extension of our model is to involve neighbor
hidden states when calculating the offsets.

In wide-window extension, we can predict k offsets at
position i with window size w by a convolutional neural
network,

o
(l)
i = Wh(l)

i:i+d (16)

O(l) = Conv(H,W,w), (17)

where O ∈ Rn×k is a matrix consisting of k offsets in
n positions. W ∈ Rw×k×d is the parameter matrix of the
convolutional neural network.

Training
Given a trainset (X(n), Y (n))Nn=1, the objective is to mini-
mize the cross entropy loss L(θ):

L(θ) =
1

N

∑
n

log p(Y (n)|X(n)) + λ‖θ‖2, (18)

where θ represents all the parameters, λ represents the
regularizer factor.

We use stochastic gradient descent with a momentum of
0.9. The initial learning rate is set according to the dataset
and task. To avoid overfitting, dropout is applied after each
recurrent or convolutional layer.

Initialization We take advantage of pre-trained word em-
beddings such as Glove (Pennington, Socher, and Manning
2014) to transfer more knowledge from large unlabeled data.
For the words that don’t appear in Glove, we randomly
initialize their embeddings from a normal distribution with

mean 0 and standard deviation
√

1
dim following (Ma and

Hovy 2016), dim is the dimension of word embedding.

Dataset Train Dev Test
CoNLL-2003 204,567 51,578 46,666

OntoNotes 5.0 1,088,503 147,724 152,728(CoNLL-2012)

Table 1: Number of tokens in different dataset.

The network weights are initialized with Xavier normal-
ization (Glorot and Bengio 2010) to maintain the variance
of activations throughout the forward and backward passes.
Biases are uniformly set to zero when the network is
constructed.

Character Embedding Following (Ma and Hovy 2016),
we also apply convolutional neural network (CNN) to ex-
tract character-level features of words. The character-level
feature of words helps the model better handle the OOV (out
of vocabulary) problems. For each character, we randomly
initialize its embedding from a normal distribution with
mean 0 and standard deviation 1.

Experiment
We consider three different kinds of deformable stacked
structure in our paper.

1. Deformable stacked structure between BiLSTM layers.

2. Deformable stacked structure between the encoder layer
(BiLSTM in our paper) and decoder layer (CRF in our
paper).

3. Both 1 and 2.

Datasets
We evaluate our model on two datasets: CoNLL-2003 NER
dataset (Tjong Kim Sang and De Meulder 2003) dataset
and OntoNotes 5.0 (Pradhan et al. 2013) dataset. We adapt
structure 2 on CoNLL-2003 dataset and structure 1, 2, 3 on
OntoNotes 5.0 dataset.

For both datasets, we perform the experiments on the
English portion.

For the OntoNotes 5.0 dataset, we split the data according
to the CoNLL-2012 shared task following (Chiu and Nichols
2016a). The Pivot Text portion is excluded because it lacks
gold annotations for named entities.

The original tags are converted to tags of “BIOES” (begin,
inside, outside, end, singleton) tagging.

The CoNLL-2003 dataset contains only 4 types of named
entities: PERSON, LOCATION, ORGANIZATION, AND
MISCELLANEOUS, while the OntoNotes 5.0 dataset con-
tains 18 types of named entities, including works of art,
dates, cardinal numbers, languages, and events. With BIOES
tagging, we have 18 labels for CoNLL-2003 dataset and 74
labels for OntoNotes 5.0 dataset(including padding label).

For the digits in both of the datasets, we replace them with
digit 0. The details of the two datasets are shown in Table 1.

CoNLL OntoNotes
2003 5.0

Offset CNN window size 3 3
Number of offsets k 3 3
Char-CNN filters 30 30
Char-CNN window size 3 3
Size of LSTM state 256 200
LSTM layers 1 2
Learning rate 0.008 0.005
Dropout 0.5 0.5
Batch size 10 8

Table 2: Hyper-parameters.

Model P R F
(Finkel and Manning 2009)? 84.04 80.86 82.42
(Ratinov and Roth 2009) 82.00 84.95 83.45
(Durrett and Klein 2014) 85.22 82.89 84.04
(Chiu and Nichols 2016b) 86.16 86.65 86.40
(Strubell et al. 2017) - - 86.84
(Strubell et al. 2017)?? - - 86.99

BiLSTM-CNN-CRF 87.03 86.97 87.00

Deformable stacked structure 88.02 88.01 88.01

Table 3: Performances on OntoNotes 5.0 dataset. ? denotes
the result from (Pradhan et al. 2013). ?? denotes the baseline
from their paper. (Finkel and Manning 2009): joint parsing
and NER model. (Ratinov and Roth 2009): using many
resources, such as Wikipedia, non-local features. (Durrett
and Klein 2014): combining coreference resolution, entity
linking, and NER into a single CRF model with cross-task
interaction factors. (Chiu and Nichols 2016b): BiLSTM-
CRF network with with many composite features. (Strubell
et al. 2017): iterated dilated CNN and CRF.

Hyper-parameters
Hyper-parameters of our models are shown in Table 2.

For the word embedding, we use Glove pre-trained em-
bedding of 100 dimensions on 6 billion words.

Result
The results of our model on OntoNotes 5.0 and CoNLL-
2003 dataset datasets are shown in Table 3 and Table 4.

On both of the two datasets, our model outperforms
the vanilla stacked BiLSTM-CNN-CRF baseline. We also
compare our model with existing models on the two datasets.
On OntoNotes dataset, our model also achieves the state-of-
the-art result.

Deformable stacked structure utilizes the feature of neigh-
bor words. Thus, it should make better predictions when
OOV occurs. We conduct experiments on models without
character embedding. The results are shown in Table 5.

Comparison of different deformable stacked structure
On OntoNotes dataset, we adopt three different deformable

Model P R F
(Collobert et al. 2011) - - 86.96
(Luo et al. 2015) - - 91.20
(Lample et al. 2016) - - 90.33
(Ma and Hovy 2016) 91.35 91.06 91.21
(Strubell et al. 2017) - - 90.54

Bi-LSTM-CNN-CRF 91.03 91.11 91.07

Deformable stacked structure 91.01 91.24 91.12

Table 4: Performances on CoNLL-2003 dataset. (Collobert
et al. 2011): a earlier neural model. (Luo et al. 2015): joint
NER/entity linking model. (Lample et al. 2016): BiLSTM-
CRF with RNN-based char information. (Ma and Hovy
2016): BiLSTM-CRF with CNN-based char information.
(Strubell et al. 2017): iterated dialated CNN and CRF.

stacked structures. We evaluate the performance of the three
different structure with varying numbers of offsets.

As we can see from Table 6, the deformable stacked
structure between LSTM layers has greater improvement
compared with the deformable stacked structure between the
encoder layer and the decoder layer. These two structures
differ on the function of their next layers, and the difference
in improvement also comes from that. For structure 1, the
deformable stacked structure reconstructs the input of the
next LSTM layer. Thus, it plays a role of feature augmen-
tation for the next LSTM layer to better extract related
information. And better extraction of feature also helps with
the decoding procedure. For structure 2, the deformable
stacked structure reconstructs the input of the CRF layer and
plays a role of feature selection for decoding.

Taking information from multiple positions helps as in-
creasing the number of offsets shows improvement.

We can also draw a significant character of the deformable
stacked structure from Table 6. Compared with the baseline
model, the deformable stacked structure has great improve-
ment in recall. It indicates that the deformable stacked
structure can discover more named entity in the sentence.

Offsets Visualization

To give an intuitive impression of how the offset dynam-
ically changing, we show the kernel density estimation of
offset values of different deformable stacked structures on
the OntoNotes test set in Figure 4.

For the multiple offsets setting, we give the kernel density
estimation of each offset. From Figure 4, we can see that
these offsets have the normal distribution in general. For
multiple offsets of deformable stacked structure between
LSTM layers, we observe that at least one of the offsets has a
distribution similar to a normal distribution with mean 0 and
the means of the rest distribution are slightly shifted from 0.
For multiple offsets of deformable stacked structure between
the encoder layer and the decoder layer, the distributions
shift from 0 significantly.

Model CoNLL-2003 OntoNotes 5.0
P R F P R F

BiLSTM-CRF 87.97 86.49 87.22 85.26 85.87 85.56

Deformable stacked structure 87.91 86.79 87.33 85.79 86.14 85.96

Table 5: Performances of models without character embedding on test set.

0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
offset 1

(a) 1 offset, structure 1

1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
offset 1
offset 2

(b) 2 offsets, structure 1

1.5 1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0 offset 1
offset 2
offset 3

(c) 3 offsets, structure 1

0.4 0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5 offset 1

(d) 1 offset, structure 2

2 1 0 1 2
0.00

0.25

0.50

0.75

1.00

1.25

1.50 offset 1
offset 2

(e) 2 offsets, structure 2

4 2 0 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0 offset 1
offset 2
offset 3

(f) 3 offsets, structure 2

Figure 4: Kernel density estimation of offsets on test set. Y-axis represents the kernel density, and X-axis represents different
values of offset. (a)(d): offset number k = 1. (b)(e): offset number k = 2. (c)(f): offset number k = 3. Structure 1: deformable
stacked structure between LSTM layers. Structure 2: deformable stacked structure between LSTM layers and CRF. Structure
3: both structure 1 and structure 2.

Case Study

We also visualize the offsets of a real case of structure 3 with
offset number k = 3 in Figure 5. For simplicity, we only
display the part of sentences that have different predictions
from the vanilla stacked model.

With deformable stacking, our model can better recognize
the borders of named entities. We can see that the positions
that our model predicts correctly while the vanilla stacked
structure predicts wrongly have similar offsets between
the CRF layer and the second LSTM layer. These offsets
provide features from the following positions and let the
model know that the named entity doesn’t break at the word
”Faith”. Correctly predicting the borders of named entities
shows great performance improvement when using BIOES
tagging.

Related Work
There are mainly two lines of work related to ours.

One is the neural architecture for named entity recog-
nition. Recently, several different neural network architec-
tures have been proposed and successfully applied to NER.
Among these neural architectures, BiLSTM+CRF (Huang,
Xu, and Yu 2015) has become a fundamental architecture,
which consists of a bi-directional LSTM as the encoder
and a conditional random field (CRF) as the decoder.
Some work (Chiu and Nichols 2016a; Ma and Hovy 2016;
Chen, Qiu, and Huang 2017) also introduced a CNN layer
before BiLSTM layer to model character-level information
and achieved better performances. Besides BiLSTM, there
is also some work to adopt CNN as encoder to capture
the context information. (Strubell et al. 2017) use a dilated
convolutional neural networks to efficiently aggregate broad
context information.

Tag O O B-ORG I-ORG I-ORG
E-ORG
I-ORG

O
I-ORG

O
I-ORG

O
E-ORG

O

CRF s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

LSTM Layer 2 h
(2)
1 h

(2)
2 h

(2)
3 h

(2)
4 h

(2)
5 h

(2)
6 h

(2)
7 h

(2)
8 h

(2)
9 h

(2)
10

LSTM Layer 1 h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4 h

(1)
5 h

(1)
6 h

(1)
7 h

(1)
8 h

(1)
9 h

(1)
10

Word director of the Office of Faith - based Initiatives .

Figure 5: A real case on OntoNotes. The dashed lines indicate the dynamic offsets in our model. The red tags denote wrong
predictions by the vanilla stacked structure, and the green tags denote the correct predictions by our model. The black tags
denote the correct predictions by both models.

Structure # of offsets P R F
baseline - 87.03 86.97 87.00

1 1 87.14 88.66 87.81
1 2 86.96 88.68 87.81
1 3 87.34 88.51 87.83

2 1 87.20 87.86 87.53
2 2 86.92 88.18 87.55
2 3 86.99 88.27 87.63

3 1 87.24 88.56 87.90
3 2 87.15 88.81 87.97
3 3 87.64 88.38 88.01

Table 6: Effects of different structure setting on OntoNotes
5.0 datset. Structure 1: deformable stacked structure be-
tween LSTM layers. Structure 2: deformable stacked struc-
ture between LSTM layers and CRF. Structure 3: both
structure 1 and structure 2.

Compared to these models, our model can effectively
increase the input width of stacked layers and help aggregate
more broad context.

Another is neural architecture search (Pham et al. 2018;
Zoph and Le 2016; Zhang, Huang, and Zhao 2018). Neural
architecture search aims to automatically design the archi-
tecture of neural networks for a specific task. The current
methods mainly adopt reinforcement learning to maximize
the expected accuracy of the generated architectures on a
validation set.

Our model can be regarded as a “lightweight” architecture
search model, and changes the connections between the
adjacent stacked layers. Moreover, we use an approximate
strategy to change the connections softly.

Conclusion
We present deformable stacked structure, in which con-
nections between two adjacent layers are dynamically gen-
erated. Three different deformable stacked structures are
designed and evaluated. Moreover, we also propose an ap-

proximate strategy to softly change the connections, which
makes the whole neural network differentiable and end-
to-end trainable. Our model achieves the state-of-the-art
performances on the OntoNotes dataset.

There are several potential directions for future work.
First, we hope to extend this work to build more flexible
neural architecture. We have already established deformable
connections between the most of layers of the encoder, but
some layers are still vanilla stacked such as the embedding
layer. Another exciting direction is to apply our model to
other NLP tasks, such as parsing. Since our model does not
require any task-specific knowledge, it might be effortless to
apply it to these tasks.

References
Chen, X.; Qiu, X.; and Huang, X. 2017. A feature-enriched
neural model for joint chinese word segmentation and part-
of-speech tagging. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence,
IJCAI-17, 3960–3966.
Chiu, J., and Nichols, E. 2016a. Named entity recognition
with bidirectional LSTM-CNNs. Transactions of the Asso-
ciation of Computational Linguistics 4:357–370.
Chiu, J., and Nichols, E. 2016b. Sequential labeling with
bidirectional LSTM-CNNs. In Proc. International Conf. of
Japanese Association for NLP, 937–940.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language
processing (almost) from scratch. The Journal of Machine
Learning Research 12:2493–2537.
Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and
Wei, Y. 2017. Deformable convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 764–773.
Durrett, G., and Klein, D. 2014. A joint model for entity
analysis: Coreference, typing, and linking. Transactions of
the Association of Computational Linguistics 2:477–490.
Finkel, J. R., and Manning, C. D. 2009. Joint parsing
and named entity recognition. In Proceedings of Human

Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, 326–334. Association for Computational
Linguistics.
Glorot, X., and Bengio, Y. 2010. Understanding the
difficulty of training deep feedforward neural networks.
In International conference on artificial intelligence and
statistics, 249–256.
Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional
LSTM-CRF models for sequence tagging. arXiv preprint
arXiv:1508.01991.
Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning.
Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami,
K.; and Dyer, C. 2016. Neural architectures for named
entity recognition. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
260–270. Association for Computational Linguistics.
Luo, G.; Huang, X.; Lin, C.-Y.; and Nie, Z. 2015. Joint
entity recognition and disambiguation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, 879–888. Association for Computational
Linguistics.
Ma, X., and Hovy, E. 2016. End-to-end sequence labeling
via bi-directional LSTM-CNNs-CRF. In Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 1064–1074. Associa-
tion for Computational Linguistics.
McCallum, A.; Freitag, D.; and Pereira, F. C. N. 2000. Max-
imum entropy markov models for information extraction
and segmentation. In Proceedings of the 17th International
Conference on Machine Learning, 591–598.
Pascanu, R.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2013.
How to construct deep recurrent neural networks. arXiv
preprint arXiv:1312.6026.
Pennington, J.; Socher, R.; and Manning, C. D. 2014.
Glove: Global vectors for word representation. Proceedings
of the Empiricial Methods in Natural Language Processing
(EMNLP 2014) 12:1532–1543.
Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean,
J. 2018. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268.
Pradhan, S.; Moschitti, A.; Xue, N.; Ng, H. T.; Björkelund,
A.; Uryupina, O.; Zhang, Y.; and Zhong, Z. 2013. Towards
robust linguistic analysis using ontonotes. In Proceedings of
the Seventeenth Conference on Computational Natural Lan-
guage Learning, 143–152. Association for Computational
Linguistics.
Rabiner, L., and Juang, B. 1986. An introduction to hidden
markov models. IEEE ASSP Magazine 3(1):4–16.
Ratinov, L., and Roth, D. 2009. Design challenges and
misconceptions in named entity recognition. In Proceedings
of the Thirteenth Conference on Computational Natural

Language Learning (CoNLL-2009), 147–155. Association
for Computational Linguistics.
Strubell, E.; Verga, P.; Belanger, D.; and McCallum, A.
2017. Fast and accurate entity recognition with iterated
dilated convolutions. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
2670–2680. Association for Computational Linguistics.
Tjong Kim Sang, E. F., and De Meulder, F. 2003. Introduc-
tion to the conll-2003 shared task: Language-independent
named entity recognition. In Daelemans, W., and Osborne,
M., eds., Proceedings of CoNLL-2003, 142–147. Edmonton,
Canada.
Zhang, T.; Huang, M.; and Zhao, L. 2018. Learning struc-
tured representation for text classification via reinforcement
learning.
Zoph, B., and Le, Q. V. 2016. Neural architec-
ture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

