
Information Aggregation via Dynamic Routing for Sequence Encoding

Jingjing Gong, Xipeng Qiu∗, Shaojing Wang, Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
{jjgong15, xpqiu, sjwang17, xjhuang}@fudan.edu.cn

Abstract

While much progress has been made in how to encode a text sequence into a sequence of vectors,
less attention has been paid to how to aggregate these preceding vectors (outputs of RNN/CNN)
into fixed-size encoding vector. Usually, a simple max or average pooling is used, which is a
bottom-up and passive way of aggregation and lack of guidance by task information. In this
paper, we propose an aggregation mechanism to obtain a fixed-size encoding with a dynamic
routing policy. The dynamic routing policy is dynamically deciding that what and how much
information need be transferred from each word to the final encoding of the text sequence. Fol-
lowing the work of Capsule Network, we design two dynamic routing policies to aggregate the
outputs of RNN/CNN encoding layer into a final encoding vector. Compared to the other aggre-
gation methods, dynamic routing can refine the messages according to the state of final encoding
vector. Experimental results on five text classification tasks show that our method outperforms
other aggregating models by a significant margin. Related source code is released on our github
page1.

1 Introduction

Learning the distributed representation of text sequences, such as sentences or documents, is crucial to a
wide range of important natural language processing applications. A primary challenge is how to encode
the variable-length text sequence into a fixed-size vector, which should fully capture the semantics of
text.

Many successful text encoding methods usually contain three key steps: (1) converting each word in a
text sequence into its embedding; (2) taking as input the sequence of word embeddings, and computing
the context-aware representation for each word with a recurrent neural network (RNN) (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014) or convolutional neural network (CNN) (Collobert et al., 2011;
Kim, 2014); (3) summarizing the sentence meaning into a fixed-size vector by an aggregation operation.
Then, these models are trained by combining a downstream task in a supervised or unsupervised way.

Currently, much attention is paid to the first two steps, while the aggregation step is less emphasized
on. Some simple aggregation methods, such as max (or average) pooling, is used to sum the RNN hidden
states or convolved vectors, computed in the previous step, into a single vector. This kind of methods
aggregate information in a bottom-up and passive way and are lack of the guide of task information.
Recently, several works employ self-attention mechanism (Lin et al., 2017; Yang et al., 2016) on top
of the recurrent or convolutional encoding layer to replace simple pooling. A basic assumption is that
the words (or even sentences) are not equally important. One or several task-specific context vectors are
used to assign a different weight to each word and select task-specific encodings. The context vectors are
parameters learned jointly with other parameters during the training process. These attentive aggregation
can select task-dependent information. However, the context vectors are fixed once learned.

In this paper, we regard the aggregation as a routing problem of how to deliver the messages from
source nodes to target nodes. In our setting, the source nodes are the outputs of a recurrent or convolu-

∗Corresponding Author
1https://github.com/FudanNLP/Capsule4TextClassification

ar
X

iv
:1

80
6.

01
50

1v
1

 [
cs

.C
L

]
 5

 J
un

 2
01

8

tional encoding layer, and the target nodes are one or several fixed-size encoding vectors to represent the
meaning of the text sequence.

From this viewpoint, both the pooling and attentive aggregations are a fixed routing policy without
considering the state of the final encoding vectors. For example, the final encoding vectors could receive
some redundancy information from different words. The fixed routing policy cannot avoid this issue.
Therefore, we wish for a new way to aggregate information according to the state of the final encoding.

In recent promising work of capsule network (Sabour et al., 2017), a dynamic routing policy is pro-
posed and proven to be more effective than the max-pooling routing. Inspired by their idea, we introduce
a text sequence encoding model with dynamic routing mechanism. Specifically, we propose two kinds
of dynamic routing policies. One is the standard dynamic routing policy same as the capsule network, in
which the source node decides what and how many messages are sent to different target nodes. The other
is the reversed dynamic routing policy, in which the target node decides what and how many messages
may be received from different source nodes.

Experimental results on five text classification tasks show that the dynamic routing policy outperforms
other aggregation methods, such as max pooling, average pooling, and self-attention by a significant
margin.

2 Background: general sequence encoding for text classification

In this section, we are going to introduce a general text classification framework. It consists of an
Embedding Layer, Encoding Layer, Aggregation Layer and Prediction Layer.

2.1 Embedding Layer
Given a text sequence with words S = w1, w2, · · · , wL. Since the words are symbols that could not be
processed directly using prominent neural architectures, so we first map each word into a d dimensional
embedding vector,

X = [x1,x1,x2, · · · ,xL]. (1)

In order to transfer knowledge from a vast unlabeled corpus, the embeddings can be taken from the
pre-trained word embedding, such as Glove (Pennington et al., 2014).

2.2 Encoding Layer
However, each word representation in X is still independent with each other. To gain some depen-
dency between adjacent words, we then build a bi-directional LSTM (BiLSTM) layer (Hochreiter and
Schmidhuber, 1997) to incorporate forward and backward context information of a sequence. Then we
can get phrase-level encoding ht of a word by concatenating forward hf

t and backward output vector hb
t

correspond to the target word.

hf
t = LSTM(hf

t−1,xt), (2)

hb
t = LSTM(hb

t+1,xt), (3)

ht = [hf
t ;h

b
t]. (4)

Thus, the outputs of BiLSTM encoder are a sequence of vectors

H = [h1,h2, · · · ,hL]. (5)

2.3 Aggregation Layer
Encoding layer only models dependency between adjacent words, but the final prediction of the text
requires a fix-length vector. Therefore we need aggregate information from variable length sequence to a
single fix-length vector. There are several different ways of aggregation such as max or average pooling,
and context-attention.

Max or Average Pooling Max or Average pooling is a simple way of aggregating information, which
does not require extra parameters and is computationally efficient (Kim, 2014; Zhao et al., 2015; Lin et
al., 2017). In the process of modeling natural language, max or average pooling is performed along the
time dimension.

emax = max([h1,h2, · · · ,hL]), (6)

eavg =
1

L

L∑
i=1

hi, (7)

For example,in Equation 6 the max operation is performed on each dimension of h along time dimension.
And in Equation 7 the average operation is performed along time dimension.

Max pooling is empirically better at aggregating long sentences than average pooling. We assume it’s
because that, the actual word that contributes to the classification problem is far less than the number
of words that contain in a long sentence. Information from important words is weakened by a large
population of “boring” words.

Self-Attention As has been stated previously, average pooling is prone to weaken important words
when the sentence is longer. Self-Attention assigns each word a weight to indicate the importance of a
word depending on the task on hand. A few words that are crucial to the task will be emphasized while
the “boring” words are ignored. The self-attention process is formulated as follows:

ui = qThi, (8)

ai =
exp(ui)∑
k exp(uk)

, (9)

eattn =
L∑
i=1

ai · hi (10)

First, we need a task-specific trainable query q ∈ Rd to calculate similarity weight between query and
each contextually encoded word. Then the corresponding weights are normalized across time dimension
using softmax normalization function Eq. 9, after that the aggregated vector is simply a weighted sum of
the input sequence in Eq. 10.

2.4 Prediction Layer
Then we feed the encoding e to the input of a multi-layer perceptron (MLP), followed by a softmax
classifier.

p(·|e) = softmax(MLP(e))

where p(·|e) is the predicted distribution of different classes given the representation vector m.

3 Aggregation via Dynamic Routing

In this section, we will formally introduce dynamic routing in detail. The goal of dynamic routing is to
encode the meaning of X into M fix-length vectors

V = [v1,v2, · · · ,vM]. (11)

To transfer information from a variable number of representation H to a fixed number of vectors V ,
a key problem we need to slove is to properly design a routing policy of information transfer. In other
words, what and how much information is to be transferred from hi to vj .

Although self-attention has been applied in aggregation, the notion of summing up elements in the
attention mechanism is still very primitive. Inspired by the capsule networks (Sabour et al., 2017), we
propose a dynamic routing aggregation (DR-AGG) mechanism to compute the final encoding of text
sequence.

softmaxPrediction
Layer

Dynamic
Routing

Layer

Encoding
Layer

(a) Aggregation via Dynamic Routing

squash

uij

sj vj

cijmij

sum

hi
Input Capule

Output Capule

(b) Detialed dynamic routing process

Figure 1: Diagram of dynamic routing for sequence encoding. (a) is the overall dynamic routing diagram,
the width of edges between capsules indicate the amount of information transfered, which is refined
iteratively. (b) is a detailed iterative process of transferring information from capsule hi to capsule vj ,
where � is a inner product operation and ⊗ is a element-wise product.

Following the definition of capsule networks, we call each encoding vector, or a group of neurons, as
a capsule. Thus, H denotes the input capsules, and V denotes the output capsules.

A message vector mi→j denotes the information to be transferred from hi to vj .

mi→j = cijf(hi, θj), (12)

where cij indicates proportionally how much information is to be transferred, and f(hi, θj) is a one-layer
fully-connected network parameterized by θj , indicating which aspect of information is to be transferred.

The output capsule vj first aggregates all the incoming messages

sj =
L∑
i=1

mi→j , (13)

and then squashes sj to confine |sj | ∈ (0, 1) to a probability,

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(14)

Dynamic Routing Process The dynamic routing process is implemented by an iterative process of re-
fining the coupling coefficient cij , which define proportionally how much information is to be transferred
from hi to vj .

The coupling coefficient cij is computed by

cij =
exp(bij)∑
k exp(bik)

, (15)

bij ← bij + vT
j f(hi, θj), (16)

where bij is the log probabilities, initialized with 0.

The coefficients cij is computed using a softmax function, and
∑M

j=1 cij = 1. Therefore, the total
amount of information transferred from capsule hi is proportionally summed to one.

When an output capsule vj receives the incoming messages, its state will be updated and the coefficient
cij is also re-computed for each input capsule. Thus, we iteratively refine the route of information pass-
ing, towards an instance dependent and context aware encoding of a sequence. After the text sequence is
encoded into M capsules, We map these capsules into vector representation by simply concatenating all
capsules,

e = [v1; . . . ;vM]. (17)

Figure 1 gives an illustration of the dynamic routing mechanism. The detailed dynamic routing algo-
rithm is further described in detail in Algorithm 1.

Algorithm 1: Dynamic Routing Algorithm
Data: Input Capsules: h1,h2, · · · ,hL, Maximum number of Iterations: T
Result: Output Capsules: v1,v2, · · · ,vM

Initialize bij ← 0 ;
for t = 1 to T do

Compute the routing coefficients cij for all i ∈ [1, L], j ∈ [1,M] ; /* Eq.15 */
Update all the output capsule vj , j ∈ [1,M] ; /* Eq. 13 and 14 */
Update bij for all i ∈ [1, L], j ∈ [1,M] ; /* Eq. 16 */

end for
return v1,v2, · · · ,vM

Reversed Dynamic Routing Process In standard DR-AGG, an input capsule decides what proportion
of information can be transferred to an output capsule. We also explore a reversed dynamic routing,
in which the output capsule decides what proportion of information should be received from an input
capsule. The only difference between reversed dynamic routing and standard dynamic routing is how
the softmax function was applied to the log probabilities [bij]L×M . Instead of normalizing each row of
[bij]L×M as is done in standard DR-AGG, reverse dynamic routing normalizes each column of [bij]L×M ,

cij =
exp(bij)∑
k exp(bkj)

(18)

Other detail of reversed dynamic routing is the same as the standard dynamic routing.
The reversed DR-AGG works like the multi-hop memory network in iteratively aggregating informa-

tion (Sukhbaatar et al., 2015; Kumar et al., 2015).

3.1 Analysis

The DR-AGG is somewhat like attention mechanism (Bahdanau et al., 2014; Vaswani et al., 2017).how-
ever, there are differences.

In standard DR-AGG, each input capsule (encoding of each word) is employed as query vector to
assign a proportion weight to each output capsule, and then sends messages to the output capsules in
proportion. Thus, for all input capsules the total amount of messages sent from an input capsule are the
same.

In reversed DR-AGG, each output capsule is used as query vector to assign a proportion weight to
each input capsule and then receives messages from the input capsules in proportion. Thus, for all output
capsules the total amount of message received by an output capsule is same.

The major difference between DR-AGG and self-attention (Lin et al., 2017; Yang et al., 2016) is
that the query vector of self-attention is task dependent trainable parameters learned during the training
phase, while the query vector of DR-AGG is each input or output capsule which is instance dependent
and dynamically updated.

Dataset Type Train Size Dev. Size Test size Classes Averaged Length Vocabulary Size

Yelp 2013 Document 62522 7773 8671 5 189 29.3k
Yelp 2014 Document 183019 22745 25399 5 197 49.6k

IMDB Document 67426 8381 9112 10 395 61.1k
SST-1 Sentence 8544 1101 2201 5 18 16.3k
SST-2 Sentence 6920 872 1821 2 19 14.8k

Table 1: Statistics of the five datasets used in this paper

Additionally, the self-attention aggregation collects information in a bottom-up way, without consid-
ering the state of the final encoding. It is hard to avoid the problems of information redundancy and
information loss. While in the standard DR-AGG, each word can iteratively decide what and how much
information is to be sent to the final encoding.

4 Hierarchical Dynamic Routing for Long Text

The dynamic routing mechanism can aggregate the text sequence with any length, therefore it is able to
handle long texts directly, such as the whole paragraphs or documents.

To further enhance the efficiency and scalability of information aggregation, we adopt a hierarchical
dynamic routing mechanism to handle the long text. The hierarchical routing strategy can exploit more
parallelization and speed up training and inference process. A similar strategy is also used in (Yang et
al., 2016).

Concretely, we split a document into sentences, and apply the proposed dynamic routing mechanism
on word and sentence levels separately. We first encode each sentence into a fixed-length vector, then
convert the sentence encodings into document encoding.

5 Experiment

We test the empirical performance of our proposed model on 5 benchmark datasets for document and
sentence level classification and compare our proposed model to other competitor models.

5.1 Datasets

To evaluate the effectiveness of our proposed aggregation method, we have conducted experiments on 5
datasets, the statistics of experimented datasets are shown in Table 1. As shown in the table, Yelp-2013,
Yelp-2014, and IMDB are document level datasets, while SST-1 and SST-2 are sentence level datasets.
Note that we use the same document level datasets provided in (Tang et al., 2015).

Yelp reviews Yelp-2013 and Yelp-2014 are reviews from Yelp, each example consists of several review
sentences and a rating score range from 1 to 5 (higher is better).

IMDB is a movie review dataset extracted from IMDB website. It is a multi-sentence dataset that for
each example there are several review sentences. A rating score range from 1 to 10 is also associated
with each example.

SST-1 Stanford Sentiment Treebank is a movie review dataset which has been parsed and further
splited to train/dev/test set (Socher et al., 2013). For each example in the dataset, there exists only one
sentence and a label associated with it. And the labels can be one of {negative, somewhat negative,
neutral, somewhat positive, positive}.

SST-2 This dataset is a binary-class version of SST-1, with neutral reviews removed and the remaining
reviews categorized to either negative or positive.

Yelp-2013 Yelp-2014 IMDB SST-1 SST-2

Embedding size 300 300 300 300 300
LSTM hidden unit 200 200 200 200 200
Capsule dimension 200 200 200 200 200
Capsule number 5 5 5 5 5
Iteration number 3 3 3 3 3
Regularization rate 1e-5 1e-5 1e-6 1e-6 1e-5
Initial learning rate 0.0001 0.0002 0.0001 0.0001 0.0003
learning rate decay 0.9 0.9 0.95 0.95 0.95
learning rate decay steps 1000 1000 1000 500 500
Initial Batch size 32 32 32 64 64
Batch size low bound 32 32 32 16 16
Dropout rate 0.2 0.2 0.2 0.2 0.5

Table 2: Detailed hyper-parameter settings

5.2 Training
Given a training set {x(i), t(i)}Ni=1, where x(i) is an example of the training set and t(i) is the correspond-
ing label, the goal is to minimize the cross-entropy loss J (θ):

J (θ)=− 1

N

∑
i

log p(t(i)|x(i); θ)+λ||θ||22, (19)

where θ represents all of the parameters.
The Adam optimizer is applied to update the parameters (Kingma and Ba, 2014). Table 2 displays the

detailed hyper-parameter settings. To prevent overfitting, the L2 regularization term is introduced to our
loss function. We also adopt early stop strategy, The training process will be stopped after seven epochs
of no improvement on development set is observed.To further avoid overfitting, dropout is applied before
the biLSTM encoder and hidden layer of classifier MLP.

The mini-batch size is set to 32 for document level dataset, 64 for sentence level dataset, examples
are sampled from a sliding bucket to speed up the training process. Data is sorted by the length of
sentence, and we first sample a window on the sorted data, we call the window “sliding bucket” and then
sample a batch of examples from the sliding bucket, we double the window size after an epoch of no
improvement on development set, through such a strategy, we are able to considerably speed up training
while retaining randomness. Also, batch size is halved after an epoch of no improvement on development
set until it reaches the low bound batch size. We also utilize a data preparation queue to parallelize data
preparation and training.

Word embedding is initialized from pre-trained Glove (Pennington et al., 2014). We randomly ini-
tialize word vectors for words that doesn’t appear in Glove. Network weights are initialized with Xavier
Normalization (Glorot and Bengio, 2010). A more detailed hyper-parameter setting can be referred to
hyper-parameter Table 2. And hyper-parameters are determined using grid search strategy.

5.3 Experimental Results
We evaluate several aggregation methods on five text classification datasets, in which Yelp-2013, Yelp-
2014 and IMDB are document-level datasets, and SST-1 and SST-2 are sentence-level datasets. Since
max pooling, average pooling and self-attention are most related to our proposed DR-AGG, we mainly
compare DR-AGG to these three methods.

Table 3 gives the results for different methods, the last two rows are our model (standard DR-AGG
and reversed DR-AGG), the table shows that our proposed dynamic routing performed the best on all
datasets. In document-level text classification, specifically Yelp 2013 Yelp 2014 and IMDB, DR-AGG
outperforms previous models best results by 2.5%, 3.0% and 1.6% respectively. In sentence-level text

Yelp-2013 Yelp-2014 IMDB SST-1 SST-2

RNTN+Recurrent (Socher et al., 2013) 57.4 58.2 40.0 - -
CNN-non-static (Kim, 2014) - - - 48.0 87.2
Paragraph-Vec (Le and Mikolov, 2014) - - - 48.7 87.8
MT-LSTM (F2S) (Liu et al., 2015) - - - 49.1 87.2
UPNN(np UP) (Tang et al., 2015) 57.7 58.5 40.5 - -
UPNN(full) (Tang et al., 2015) 59.6 60.8 43.5 - -
Cached LSTM (Xu et al., 2016) 59.4 59.2 42.1 - -

Max pooling 61.1 61.2 41.1 48.0 87.0
Average pooling 60.7 60.6 39.1 46.2 85.2
Self-attention 61.0 61.5 43.3 48.2 86.4

Standard DR-AGG 62.1 63.0 45.1 50.5 87.6
Reverse DR-AGG 61.6 62.5 44.5 49.3 87.2

Table 3: Experimental result comparison on five datasets. For the document-level datasets, hierarchical
aggregation is used for both self-attention and DR-AGGs.

(1) so relentlessly wholesome it made me want to swipe something .
(2) so relentlessly wholesome it made me want to swipe something .
(3) so relentlessly wholesome it made me want to swipe something .

Table 4: A visualization to show the perspective of a sentence from 3 different upper level capsule. A
deeper color indicates more information of the associated word is routed to the corresponding capsule.

classification, such as SST-1 SST-2, our model also achieves better results. Compared to max pooling,
average pooling and self-attention, which are closely related to our model, DR-AGGs significantly im-
proves the performance. For example the standard DR-AGG outperforms the max pooling approach by
1%, 1.8%, 4%,2.5% and 0.4% on Yelp 2013,Yelp 2014, IMDB, SST-1 and SST-2. It empirically shows
that our proposed dynamic routing policy is the most effective method on aggregating information.

It is worth to note the reversed DR-AGG is inferior to the standard DR-AGG by a small margin,
although it has also achieved better results than the other aggregation methods and SOTA approaches.
As discussion before, the reversed DR-AGG have much resemblance with the attention using output
capsule as query vector. Not all of the input capsules would be selected by the reversed DR-AGG, while
in the standard DR-AGG, the information of all the input capsules need be sent to the output capsules.

Effects of Iterative Routing We also study how the iteration number affect the performance of aggre-
gation on the SST-2 dataset. Figure 2 shows the comparison of 1 - 5 iterations in the standard DR-AGG.
The capsule number is set to 1, 2, 3 and 4 for each comparison respectively. We found that the perfor-
mances on several different capsule number setting reach the best when iteration is set to 3. The results
indicate the dynamic routing is contributing to improve the performance.

Visualization Additionally, we visualize how much information each input capsule sends to the output
capsules. As shown in Table 4, the visualization experiment was conducted with the setting on three
output capsules. The i-th column represents the i-th input capsule, while the j-th row is the j-th output
capsule. The color density of each word denotes the proportion cij in equation 15. A deeper color
indicates more information of the concerned word is routed to the output capsule.

Intuitively, the different part of the sentence is routed to three different capsules. In another word, each
capsule has a different perspective or focus of the sequence. Therefore, DR-AGG can avoid the problem
of information redundancy and information missing.

1 2 3 4 5

86

86.5

87

87.5

Iteration

A
cc

ur
ac

y
on

te
st

se
t

1 caps
2 caps
3 caps
4 caps

Figure 2: Relationship between test accuracy and routing iteration, where the vertical axis denotes test
accuracy and the horizontal axis denotes routing iteration. When the iteration is set to 3 performance
peaks on several different capsule number setting

6 Related Work

Currently, much attention has been paid to how developing a sophisticated encoding models to capture
the long and short term dependency information in a sequence. Specific to text classification task, most
of the models cannot deal with the texts of several sentences (paragraphs, documents), such as MV-RNN
(Socher et al., 2012), RNTN (Socher et al., 2013), CNN (Kim, 2014), AdaSent (Zhao et al., 2015),
and so on. The simple neural bag-of-words model can deal with long texts, but it loses the word order
information. PV (Le and Mikolov, 2014) works in an unsupervised way, and the learned vector cannot
be fine-tuned on the specific task. There are also many works (Liu et al., 2015; Xu et al., 2016; Cheng
et al., 2016) to improve LSTM’s ability to carrying information for a long distance.

A line of orthogonal researches (Lin et al., 2017; Yang et al., 2016; Shen et al., 2018a; Shen et
al., 2018b) is to introduce attention mechanism (Vaswani et al., 2017) to weighted average the outputs
of CNN/RNN layer. The attention mechanism can effectively reduce the burden of CNN/RNN. The
CNN/RNN encoding layer is only expected to extract local context information for each word, while the
global semantics of text sequence can be aggregated from the local encoding vectors.

The attention based aggregation collects information in a bottom-up way, without considering the state
of the final encoding. It is hard to avoid the problems of information redundancy or information lost.
An improved idea is to use multi-hop attention, like memory network (Sukhbaatar et al., 2015; Kumar et
al., 2015), to iterative aggregate information. This idea is equivalent to our proposed reversed dynamic
routing mechanism.

Different from the attention based aggregation methods, aggregation via dynamic routing is iteratively
deciding that what and how much information need be transfer to the final encoding of each word.

7 Conclusion

In this paper, we focus on how to obtain a fixed-size encoding of text sequence by aggregating the encod-
ings of each word. Although we use LSTM hidden states as word encoding in this paper, the other word
encodings, such as convolved n-gram, could be alternatively used. We introduced a fixed-size encoding
of text sequence with dynamic routing mechanism. Experimental results of five text classification tasks
show that the model outperforms other encoding models by a significant margin.

In the future, we would like to investigate more sophisticated routing policy for better encoding the
text sequence. Besides, dynamic routing should also be useful to improve the encoder in the sequence-
to-sequence tasks (Sutskever et al., 2014).

References
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly learning to align and translate.

ArXiv e-prints, September.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-networks for machine reading.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages 551–561.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–2537.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural net-
works. In International conference on artificial intelligence and statistics, pages 249–256.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. 2015. Ask me anything: Dynamic memory networks for natural language
processing. arXiv preprint arXiv:1506.07285.

Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings
of ICML.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio.
2017. A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130.

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and Xuanjing Huang. 2015. Multi-timescale long short-term
memory neural network for modelling sentences and documents. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
pages 2326–2335.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. 2017. Dynamic routing between capsules. In Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages 3859–3869.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang. 2018a. DISAN: Directional
self-attention network for RNN/CNN-free language understanding. In AAAI Conference on Artificial Intelli-
gence.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. 2018b. Bi-directional block self-attention
for fast and memory-efficient sequence modeling.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of EMNLP, pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christo-
pher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceed-
ings of EMNLP.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. 2015. End-to-end memory networks. In Advances in
Neural Information Processing Systems, pages 2431–2439.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems, pages 3104–3112.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Learning semantic representations of users and products for document
level sentiment classification. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), volume 1, pages 1014–1023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 6000–6010.

Jiacheng Xu, Danlu Chen, Xipeng Qiu, and Xuanjing Huang. 2016. Cached long short-term memory neural
networks for document-level sentiment classification. CoRR, abs/1610.04989.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention
networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 1480–1489.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015. Self-adaptive hierarchical sentence model. arXiv preprint
arXiv:1504.05070.

