arXiv:1905.05583v3 [cs.CL] 5 Feb 2020

How to Fine-Tune BERT for Text Classification?

Chi Sun, Xipeng Qiu’, Yige Xu, Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University
School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China
{sunc17, xpgiu, ygxul8, xjhuang}@fudan.edu.cn

Abstract

Language model pre-training has proven to be
useful in learning universal language represen-
tations. As a state-of-the-art language model
pre-training model, BERT (Bidirectional En-
coder Representations from Transformers) has
achieved amazing results in many language
understanding tasks. In this paper, we con-
duct exhaustive experiments to investigate dif-
ferent fine-tuning methods of BERT on text
classification task and provide a general solu-
tion for BERT fine-tuning. Finally, the pro-
posed solution obtains new state-of-the-art re-
sults on eight widely-studied text classification
datasets.!

1 Introduction

Text classification is a classic problem in Natural
Language Processing (NLP). The task is to assign
predefined categories to a given text sequence. An
important intermediate step is the text representa-
tion. Previous work uses various neural models
to learn text representation, including convolution
models (Kalchbrenner et al., 2014; Zhang et al.,
2015; Conneau et al., 2016; Johnson and Zhang,
2017; Zhang et al., 2017; Shen et al., 2018), re-
current models (Liu et al., 2016; Yogatama et al.,
2017; Seo et al., 2017), and attention mechanisms
(Yang et al., 2016; Lin et al., 2017).

Alternatively, substantial work has shown that
pre-trained models on large corpus are beneficial
for text classification and other NLP tasks, which
can avoid training a new model from scratch. One
kind of pre-trained models is the word embed-
dings, such as word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014), or the con-
textualized word embeddings, such as CoVe (Mc-
Cann et al., 2017) and ELMo (Peters et al.,

*Corresponding author

IThe source codes are available at https://github.
com/xuyige/BERT4doc-Classification.

2018). These word embeddings are often used
as additional features for the main task. An-
other kind of pre-training models is sentence-
level. Howard and Ruder (2018) propose ULM-
FiT, a fine-tuning method for pre-trained language
model that achieves state-of-the-art results on six
widely studied text classification datasets. More
recently, pre-trained language models have shown
to be useful in learning common language rep-
resentations by utilizing a large amount of unla-
beled data: e.g., OpenAl GPT (Radford et al.,
2018) and BERT (Devlin et al., 2018). BERT is
based on a multi-layer bidirectional Transformer
(Vaswani et al., 2017) and is trained on plain text
for masked word prediction and next sentence pre-
diction tasks.

Although BERT has achieved amazing results
in many natural language understanding (NLU)
tasks, its potential has yet to be fully explored.
There is little research to enhance BERT to im-
prove the performance on target tasks further.

In this paper, we investigate how to maximize
the utilization of BERT for the text classifica-
tion task. We explore several ways of fine-tuning
BERT to enhance its performance on text classifi-
cation task. We design exhaustive experiments to
make a detailed analysis of BERT.

The contributions of our paper are as follows:

e We propose a general solution to fine-tune
the pre-trained BERT model, which includes
three steps: (1) further pre-train BERT on
within-task training data or in-domain data;
(2) optional fine-tuning BERT with multi-
task learning if several related tasks are avail-
able; (3) fine-tune BERT for the target task.

e We also investigate the fine-tuning meth-
ods for BERT on target task, including pre-
process of long text, layer selection, layer-
wise learning rate, catastrophic forgetting,

https://github.com/xuyige/BERT4doc-Classification
https://github.com/xuyige/BERT4doc-Classification

and low-shot learning problems.

e We achieve the new state-of-the-art results on
seven widely-studied English text classifica-
tion datasets and one Chinese news classifi-
cation dataset.

2 Related Work

Borrowing the learned knowledge from the other
tasks has a rising interest in the field of NLP. We
briefly review two related approaches: language
model pre-training and multi-task Learning.

2.1 Language Model Pre-training

Pre-trained word embeddings (Mikolov et al.,
2013; Pennington et al., 2014), as an important
component of modern NLP systems can offer sig-
nificant improvements over embeddings learned
from scratch. The generalization of word embed-
dings, such as sentence embeddings (Kiros et al.,
2015; Logeswaran and Lee, 2018) or paragraph
embeddings (Le and Mikolov, 2014), are also used
as features in downstream models.

Peters et al. (2018) concatenate embeddings de-
rived from language model as additional features
for the main task and advance the state-of-the-
art for several major NLP benchmarks. In addi-
tion to pre-training with unsupervised data, trans-
fer learning with a large amount of supervised data
can also achieve good performance, such as natu-
ral language inference (Conneau et al., 2017) and
machine translation (McCann et al., 2017).

More recently, the method of pre-training lan-
guage models on a large network with a large
amount of unlabeled data and fine-tuning in down-
stream tasks has made a breakthrough in sev-
eral natural language understanding tasks, such as
OpenAl GPT (Radford et al., 2018) and BERT
(Devlin et al., 2018). Dai and Le (2015) use lan-
guage model fine-tuning but overfit with 10k la-
beled examples while Howard and Ruder (2018)
propose ULMFiT and achieve state-of-the-art re-
sults in the text classification task. BERT is
pre-trained on Masked Language Model Task and
Next Sentence Prediction Task via a large cross-
domain corpus. Unlike previous bidirectional lan-
guage models (biLM) limited to a combination of
two unidirectional language models (i.e., left-to-
right and right-to-left), BERT uses a Masked Lan-
guage Model to predict words which are randomly
masked or replaced. BERT is the first fine-tuning
based representation model that achieves state-of-

the-art results for a range of NLP tasks, demon-
strating the enormous potential of the fine-tuning
method. In this paper, we have further explored
the BERT fine-tuning method for text classifica-
tion.

2.2 Multi-task learning

Multi-task learning (Caruana, 1993; Collobert and
Weston, 2008) is another relevant direction. Rei
(2017) and Liu et al. (2018) use this method to
train the language model and the main task model
jointly. Liu et al. (2019) extend the MT-DNN
model originally proposed in Liu et al. (2015) by
incorporating BERT as its shared text encoding
layers. MTL requires training tasks from scratch
every time, which makes it inefficient and it usu-
ally requires careful weighing of task-specific ob-
jective functions (Chen et al., 2017). However,
we can use multi-task BERT fine-tuning to avoid
this problem by making full use of the shared pre-
trained model.

3 BERT for Text Classification

BERT-base model contains an encoder with 12
Transformer blocks, 12 self-attention heads, and
the hidden size of 768. BERT takes an input of
a sequence of no more than 512 tokens and out-
puts the representation of the sequence. The se-
quence has one or two segments that the first token
of the sequence is always [CLS] which contains
the special classification embedding and another
special token [SEP] is used for separating seg-
ments.

For text classification tasks, BERT takes the fi-
nal hidden state h of the first token [CLS] as the
representation of the whole sequence. A simple
softmax classifier is added to the top of BERT to
predict the probability of label c:

p(c/h) = softmax(Wh), (D

where W is the task-specific parameter matrix.
We fine-tune all the parameters from BERT as well
as W jointly by maximizing the log-probability of
the correct label.

4 Methodology

When we adapt BERT to NLP tasks in a target
domain, a proper fine-tuning strategy is desired.
In this paper, we look for the proper fine-tuning
methods in the following three ways.

Single-Task
| : Fine-Tuning
——>[Further 77~ A
s
e

Figure 1: Three general ways for fine-tuning BERT,
shown with different colors.

Multi-Task
Fine-Tuning

1) Fine-Tuning Strategies: When we fine-tune
BERT for a target task, there are many ways to
utilize BERT. For example, the different layers
of BERT capture different levels of semantic and
syntactic information, which layer is better for a
target task? How we choose a better optimization
algorithm and learning rate?

2) Further Pre-training: BERT is trained in
the general domain, which has a different data dis-
tribution from the target domain. A natural idea is
to further pre-train BERT with target domain data.

3) Multi-Task Fine-Tuning: Without pre-
trained LM models, multi-task learning has shown
its effectiveness of exploiting the shared knowl-
edge among the multiple tasks. When there are
several available tasks in a target domain, an inter-
esting question is whether it still bring benefits to
fine-tune BERT on all the tasks simultaneously.

Our general methodology of fine-tuning BERT
is shown in Figure 1.

4.1 Fine-Tuning Strategies

Different layers of a neural network can capture
different levels of syntactic and semantic infor-
mation (Yosinski et al., 2014; Howard and Ruder,
2018).

To adapt BERT to a target task, we need to con-
sider several factors: 1) The first factor is the pre-
processing of long text since the maximum se-
quence length of BERT is 512. 2) The second
factor is layer selection. The official BERT-base
model consists of an embedding layer, a 12-layer
encoder, and a pooling layer. We need to select the
most effective layer for the text classification task.
3) The third factor is the overfitting problem. A
better optimizer with an appropriate learning rate
is desired.

Intuitively, the lower layer of the BERT model
may contain more general information. We can
fine-tune them with different learning rates.

Following Howard and Ruder (2018), we split
the parameters 6 into {#',--- ,#*} where 6 con-

tains the parameters of the [-th layer of BERT.
Then the parameters are updated as follows:

0, =0,_, —n' - VaJ(0),)

where n' represents the learning rate of the [-th
layer.

We set the base learning rate to n’ and use
n*=1 = ¢ .y, where £ is a decay factor and less
than or equal to 1. When £ < 1, the lower layer
has a lower learning rate than the higher layer.
When ¢ = 1, all layers have the same learning
rate, which is equivalent to the regular stochastic
gradient descent (SGD). We will investigate these

factors in Sec. 5.3.

4.2 Further Pre-training

The BERT model is pre-trained in the general-
domain corpus. For a text classification task in a
specific domain, such as movie reviews, its data
distribution may be different from BERT. There-
fore, we can further pre-train BERT with masked
language model and next sentence prediction tasks
on the domain-specific data. Three further pre-
training approaches are performed:

1) Within-task pre-training, in which BERT is
further pre-trained on the training data of a target
task.

2) In-domain pre-training, in which the pre-
training data is obtained from the same domain of
a target task. For example, there are several dif-
ferent sentiment classification tasks, which have a
similar data distribution. We can further pre-train
BERT on the combined training data from these
tasks.

3) Cross-domain pre-training, in which the pre-
training data is obtained from both the same and
other different domains to a target task.

We will investigate these different approaches
to further pre-training in Sec. 5.4.

4.3 Multi-Task Fine-Tuning

Multi-task Learning is also an effective approach
to share the knowledge obtained from several re-
lated supervised tasks. Similar to Liu et al. (2019),
we also use fine-tune BERT in multi-task learning
framework for text classification.

All the tasks share the BERT layers and the em-
bedding layer. The only layer that does not share
is the final classification layer, which means that
each task has a private classifier layer. The exper-
imental analysis is in Sec. 5.5.

Average Max Exceeding Train Test
Dataset Classes Type lengths lengths ratio samples samples
IMDb 2 Sentiment 292 3,045 12.69% 25,000 25,000
Yelp P. 2 Sentiment 177 2,066 4.60% 560,000 38,000
Yelp F. 5 Sentiment 179 2,342 4.60% 650,000 50,000
TREC 6 Question 11 39 0.00% 5,452 500
Yahoo! Answers 10 Question 131 4,018 2.65% 1,400,000 60,000
AG’s News 4 Topic 44 221 0.00% 120,000 7,600
DBPedia 14 Topic 67 3,841 0.00% 560,000 70,000
Sogou News 6 Topic 737 47,988 46.23% 54,000 6,000

Table 1: Statistics of eight text classification datasets. The exceeding ratio means the percentage of the number of

samples with a length exceeding 512.

S Experiments

We investigate the different fine-tuning methods
for seven English and one Chinese text classifica-
tion tasks. We use the base BERT models: the un-
cased BERT-base model® and the Chinese BERT-
base model® respectively.

5.1 Datasets

We evaluate our approach on eight widely-studied
datasets. These datasets have varying numbers of
documents and varying document lengths, cover-
ing three common text classification tasks: sen-
timent analysis, question classification, and topic
classification. We show the statistics for each
dataset in Table 1.

Sentiment analysis For sentiment analysis,
we use the binary film review IMDb dataset (Maas
et al., 2011) and the binary and five-class version
of the Yelp review dataset built by Zhang et al.
(2015).

Question classification For question classifi-
cation, we evaluate our method on the six-class
version of the TREC dataset (Voorhees and Tice,
1999) and Yahoo! Answers dataset created by
Zhang et al. (2015). TREC dataset is dataset for
question classification consisting of open-domain,
fact-based questions divided into broad seman-
tic categories. Compared to other document-level
datasets, TREC dataset is sentence-level, and there
are fewer training examples for it. Yahoo! An-
swers dataset is a big dataset with 1,400k train
samples.

Topic classification For topic classification, we
use large-scale AG’s News and DBPedia cre-
ated by Zhang et al. (2015). To test the ef-

Zhttps://storage.googleapis.com/bert_models/2018_10_18/
uncased_L-12_H-768_A-12.zip

3https://storage.googleapis.com/bert_models/2018_11_03/
chinese_L-12_H-768_A-12.zip

fectiveness of BERT for Chinese text, we cre-
ate the Chinese training and test datasets for So-
gou news corpus. Unlike Zhang et al. (2015),
we use the Chinese character directly rather than
Pinyin. The dataset is a combination of the So-
gouCA and SogouCS news corpora (Wang et al.,
2008). We determine the category of the news
based on the URL, such as “sports” correspond-
ing to “http://sports.sohu.com”. We choose 6 cate-
gories — “sports”, “house”, “business”, “‘entertain-
ment”, “women” and “technology”. The number
of training samples selected for each class is 9,000
and testing 1,000.

Data preprocessing Following Devlin et al.
(2018), we use WordPiece embeddings (Wu et al.,
2016) with a 30,000 token vocabulary and de-
note split word pieces with ##. So the statis-
tics of the length of the documents in the datasets
are based on the word pieces. For further pre-
training with BERT, we use spaCy* to perform
sentence segmentation in English datasets and we
use “o 7,“? 7 and “! > as separators when deal-

ing with the Chinese Sogou News dataset.

5.2 Hyperparameters

We use the BERT-base model (Devlin et al., 2018)
with a hidden size of 768, 12 Transformer blocks
(Vaswani et al., 2017) and 12 self-attention heads.
We further pre-train with BERT on 1 TITAN Xp
GPU, with a batch size of 32, max squence length
of 128, learning rate of Se-35, train steps of 100,000
and warm-up steps of 10,000.

We fine-tune the BERT model on 4 TITAN Xp
GPUs and set the batch size to 24 to ensure that the
GPU memory is fully utilized. The dropout prob-
ability is always kept at 0.1. We use Adam with
51 = 0.9and B2 = 0.999. We use slanted triangu-
lar learning rates (Howard and Ruder, 2018), the

*https://spacy.io/

base learning rate is 2e-5, and the warm-up pro-
portion is 0.1. We empirically set the max number
of the epoch to 4 and save the best model on the
validation set for testing.

5.3 Exp-I: Investigating Different
Fine-Tuning Strategies

In this subsection, we use the IMDb dataset to in-
vestigate the different fine-tuning strategies. The
official pre-trained model is set as the initial en-
coder”.

5.3.1 Dealing with long texts

The maximum sequence length of BERT is 512.
The first problem of applying BERT to text clas-
sification is how processing the text with a length
larger than 512. We try the following ways for
dealing with long articles.

Truncation methods Usually, the key informa-
tion of an article is at the beginning and end. We
use three different methods of truncate text to per-
form BERT fine-tuning.

1. head-only: keep the first 510 tokens®;

2. tail-only: keep the last 510 tokens;

3. head+tail: empirically select the first 128
and the last 382 tokens.

Hierarchical methods The input text is firstly
divided into k& = L/510 fractions, which is fed
into BERT to obtain the representation of the &
text fractions. The representation of each fraction
is the hidden state of the [CLS] tokens of the last
layer. Then we use mean pooling, max pooling
and self-attention to combine the representations
of all the fractions.

Table 2 shows the effectiveness of the above
methods. The truncation method of head+tail
achieves the best performance on IMDb and So-
gou datasets. Therefore, we use this method to
deal with the long text in the following experi-
ments.

5.3.2 Features from Different layers

Each layer of BERT captures the different features
of the input text. We investigate the effectiveness
of features from different layers. We then fine-
tune the model and record the performance on test
error rates.

Table 3 shows the performance of fine-tuning
BERT with different layers. The feature from the

Shttps://github.com/google-research/bert
6512 to subtract the [CLS] and [SEP] tokens.

Method IMDb Sogou
head-only 5.63 2.58
tail-only 5.44 3.17
head+tail 5.42 243
hier. mean 5.89 2.83
hier. max 5.71 247

hier. self-attention 5.49 2.65

Table 2: Test error rates (%) on IMDb and Chinese So-
gou News datasets.

last layer of BERT gives the best performance.
Therefore, we use this setting for the following ex-
periments.

Layer Test error rates(%)
Layer-0 11.07
Layer-1 9.81
Layer-2 9.29
Layer-3 8.66
Layer-4 7.83
Layer-5 6.83
Layer-6 6.83
Layer-7 6.41
Layer-8 6.04
Layer-9 5.70
Layer-10 5.46
Layer-11 5.42
First 4 Layers + concat 8.69
First 4 Layers + mean 9.09
First 4 Layers + max 8.76
Last 4 Layers + concat 5.43
Last 4 Layers + mean 5.44
Last 4 Layers + max 5.42
All 12 Layers + concat 5.44

Table 3: Fine-tuning BERT with different layers on
IMDb dataset.

5.3.3 Catastrophic Forgetting

Catastrophic forgetting (McCloskey and Cohen,
1989) is usually a common problem in trans-
fer learning, which means the pre-trained knowl-
edge is erased during learning of new knowledge.
Therefore, we also investigate whether BERT suf-
fers from the catastrophic forgetting problem.

We fine-tune BERT with different learning
rates, and the learning curves of error rates on
IMDb are shown in Figure 2.

We find that a lower learning rate, such as 2e-5,
is necessary to make BERT overcome the catas-
trophic forgetting problem. With an aggressive
learn rate of 4e-4, the training set fails to converge.

0.2

—— train
— dev

1000 2000 3000 4000 5000 . 1000 2000 3000 4000
iterations iterations

(a) Ir=2e-5 (b) Ir=5e-5

‘W'Jﬁw‘h‘f“ﬁ14‘.(%(“;\'*W‘w«u

0.6

0.2

—— train 0.5

0.4

0.3
02 —— train
ol — dev

0.0

— dev

0.1

|
il
‘w "1“1/‘1\&"1

by b
li M:’Wq‘lﬂﬂ\{ﬂ"ﬂ*ffrﬁlflﬂ*ﬂf\jw"{'*

0.0

0 1000 2000 3000 4000 5000 Y 1000 2000 3000 4000 5000

iterations. iterations

(c) Ir=le-4 (d) Ir=de-4

Figure 2: Catastrophic Forgetting

5.3.4 Layer-wise Decreasing Layer Rate

Table 4 show the performance of different base
learning rate and decay factors (see Eq. (2)) on
IMDb dataset. We find that assign a lower learn-
ing rate to the lower layer is effective to fine-tuning
BERT, and an appropriate setting is £=0.95 and
Ir=2.0e-5.

Learning rate Decay factor £ Test error rates(%)

2.5e-5 1.00 552
2.5e-5 0.95 5.46
2.5e-5 0.90 5.44
2.5e-5 0.85 5.58
2.0e-5 1.00 5.42
2.0e-5 0.95 5.40
2.0e-5 0.90 5.52
2.0e-5 0.85 5.65

Table 4: Decreasing layer-wise layer rate.

5.4 Exp-II: Investigating the Further
Pretraining

Besides, fine-tune BERT with supervised learn-
ing, we can further pre-train BERT on the train-
ing data by unsupervised masked language model
and next sentence prediction tasks. In this sec-
tion, we investigate the effectiveness of further
pre-training. In the following experiments, we use
the best strategies in Exp-I during the fine-tuning
phase.

5.4.1 Within-Task Further Pre-Training

Therefore, we first investigate the effectiveness of
within-task further pre-training. We take further
pre-trained models with different steps and then
fine-tune them with text classification task.

As shown in Figure 3, the further pre-training
is useful to improve the performance of BERT for
a target task, which achieves the best performance
after 100K training steps.

L L B

BERT-ITPT-FiT

5.5 - -
<
E
Q
=
<
—

5 5| :
=
Yt
(5]
-
3
H

4.5 - -

T T T T

0 100 200 300 400 500
Within-Task Pre-training Steps (thousand)

Figure 3: Benefit of different further pre-training steps
on IMDb datasets. BERT-ITPT-FiT means “BERT +
withIn-Task Pre-Training + Fine-Tuning”.

5.4.2 In-Domain and Cross-Domain Further
Pre-Training

Besides the training data of a target task, we
can further pre-train BERT on the data from the
same domain. In this subsection, we investigate
whether further pre-training BERT with in-domain
and cross-domain data can continue to improve the
performance of BERT.

We partition the seven English datasets into
three domains: topic, sentiment, and question.
The partition way is not strictly correct. Therefore
we also conduct extensive experiments for cross-
task pre-training, in which each task is regarded as
a different domain.

The results is shown in Table 5. We find that al-
most all further pre-training models perform bet-
ter on all seven datasets than the original BERT-
base model (row ‘w/o pretrain’ in Table 5). Gen-
erally, in-domain pretraining can bring better per-
formance than within-task pretraining. On the
small sentence-level TREC dataset, within-task
pre-training do harm to the performance while in-
domain pre-training which utilizes Yah. A. corpus
can achieve better results on TREC.

Cross-domain pre-training (row ‘all’ in Table 5)

Domain | sentiment | question | topic
Dataset | IMDb Yelp P. YelpF. | TREC Yah. A. | AG’s News DBPedia
IMDb 4.37 2.18 29.60 2.60 22.39 5.24 0.68
Yelp P. 5.24 1.92 29.37 2.00 22.38 5.14 0.65
Yelp F. 5.18 1.94 29.42 2.40 22.33 543 0.65
all sentiment 4.88 1.87 29.25 3.00 22.35 5.34 0.67
TREC 5.65 2.09 29.35 3.20 22.17 5.12 0.66
Yah. A. 5.52 2.08 29.31 1.80 22.38 5.16 0.67
all question 5.68 2.14 29.52 2.20 21.86 5.21 0.68
AG’s News 5.97 2.15 29.38 2.00 22.32 4.80 0.68
DBPedia 5.80 2.13 29.47 2.60 22.30 5.13 0.68
all topic 5.85 2.20 29.68 2.60 22.28 4.88 0.65
all ‘ 5.18 1.97 29.20 ‘ 2.80 21.94 ‘ 5.08 0.67
w/o pretrain ‘ 5.40 2.28 30.06 ‘ 2.80 22.42 ‘ 5.25 0.71

Table 5: Performance of in-domain and cross-domain further pre-training on seven datasets. Each was further
pre-trained for 100k steps. The first column indicates the different further pre-training dataset. “all sentiment”
means the dataset consists of all the training datasets in sentiment domain. “all” means the dataset consists of all
the seven training datasets. Note that some of the data in Yelp P. and Yelp F. are overlapping, e.g., part of the data
in the test set of Yelp P. will appear in the training set of Yelp F., so we remove this part of data from the training

sets during further pre-training.

does not bring an obvious benefit in general. It
is reasonable since BERT is already trained on a
general domain.

We also find that IMDDb and Yelp do not help
each other in sentiment domain. The reason may
be that IMDb and Yelp are two sentiment tasks of
movie and food. The data distributions have a sig-
nificant difference.

5.4.3 Comparisons to Previous Models

We compare our model with the following a va-
riety of different methods: CNN-based methods
such as Char-level CNN (Zhang et al., 2015), VD-
CNN (Conneau et al., 2016) and DPCNN (John-
son and Zhang, 2017); RNN-based models such
as D-LSTM (Yogatama et al., 2017), Skim-LSTM
(Seo et al., 2017) and hierarchical attention net-
works (Yang et al., 2016); feature-based transfer
learning methods such as rigion embedding (Qiao
et al., 2018) and CoVe (McCann et al., 2017); and
the language model fine-tuning method (ULMFiT)
(Howard and Ruder, 2018), which is the current
state-of-the-art for text classification.

We implement BERT-Feat through using the
feature from BERT model as the input embed-
ding of the biLSTM with self-attention (Lin et al.,
2017). The result of BERT-IDPT-FiT corresponds
to the row of ‘all sentiment’, ‘all question’, and ‘all
topic’ in Table 5, and the result of BERT-CDPT-
FiT corresponds to the row of ‘all’ in it.

As is shown in Table 6, BERT-Feat performs

better than all other baselines except for ULMFiT.
In addition to being slightly worse than BERT-
Feat on DBpedia dataset, BERT-FiT outperforms
BERT-Feat on the other seven datasets. Moreover,
all of the three further pre-training models are bet-
ter than BERT-FiT model. Using BERT-Feat as a
reference, we calculate the average percentage in-
crease of other BERT-FiT models on each dataset.
BERT-IDPT-FiT performs best, with an average
error rate reduce by 18.57%.

5.5 Exp-III: Multi-task Fine-Tuning

When there are several datasets for the text classi-
fication task, to take full advantage of these avail-
able data, we further consider a fine-tuning step
with multi-task learning. We use four English text
classification datasets (IMDb, Yelp P., AG, and
DBP). The dataset Yelp F. is excluded since there
is overlap between the test set of Yelp F. and the
training set of Yelp P., and two datasets of question
domain are also excluded.

We experiment with the official uncased BERT-
base weights and the weights further pre-trained
on all seven English classification datasets re-
spectively. In order to achieve better classifica-
tion results for each subtask, after fine-tuning to-
gether, we fine-tune the extra steps on the respec-
tive datasets with a lower learning rate.

Table 7 shows that for multi-task fine-tuning
based on BERT, the effect is improved. However,
multi-task fine-tuning does not seem to be help-

Model IMDb YelpP. YelpF. TREC Yah.A. AG DBP Sogou Avg. A
Char-level CNN(Zhang et al., 2015) / 4.88 37.95 / 2880 951 1.55 3.80" /
VDCNN (Conneau et al., 2016) / 4.28 35.28 / 26.57 8.67 1.29 3.28 /
DPCNN (Johnson and Zhang, 2017) / 2.64 30.58 / 2390 6.87 0.88 3.48" /
D-LSTM (Yogatama et al., 2017) / 7.40 40.40 / 2630 790 1.30 5.10 /
Standard LSTM (Seo et al., 2017) 8.90 / / / / 6.50 / / /
Skim-LSTM (Seo et al., 2017) 8.80 / / / / 6.40 / / /
HAN (Yang et al., 2016) / / / / 24.20 / / / /
Region Emb. (Qiao et al., 2018) / 3.60 35.10 / 2630 720 1.10 2.40 /
CoVe (McCann et al., 2017) 8.20 / / 4.20 / / / / /
ULMFiT (Howard and Ruder, 2018) 4.60 2.16 29.98 3.60 / 501 0.80 / /
BERT-Feat 6.79 2.39 30.47 4.20 2272 592 0.70 2.50 -
BERT-FiT 5.40 2.28 30.06 2.80 2242 525 0.71 243 9.22%
BERT-ITPT-FiT 4.37 1.92 29.42 3.20 2238 4.80 0.68 1.93 16.07%
BERT-IDPT-FiT 4.88 1.87 29.25 2.20 21.86 488 0.65 / 18.57%
BERT-CDPT-FiT 5.18 1.97 29.20 2.80 2194 5.08 0.67 / 14.38%

Table 6: Test error rates (%) on eight text classification datasets. The results without * of previous models are the
results reported on their papers. / means not reported. * means the results are from our implementation since the
Sogou dataset is different from theirs. BERT-Feat means “BERT as features”. BERT-FiT means “BERT + Fine-
Tuning”. BERT-ITPT-FiT means “BERT + withIn-Task Pre-Training + Fine-Tuning”. BERT-IDPT-FiT means
“BERT + In-Domain Pre-Training + Fine-Tuning”. BERT-CDPT-FiT means “BERT + Cross-Domain Pre-Training

+ Fine-Tuning”.

Method IMDb YelpP. AG DBP
BERT-FiT 5.40 228 525 071
BERT-MFiT-FiT 5.36 2.19 520 0.68
BERT-CDPT-FiT 5.18 197 5.08 0.67
BERT-CDPT-MFiT-FiT 4.96 206 513 0.67

Table 7: Test error rates (%) with multi-task fine-
tuning.

ful to BERT-CDPT in Yelp P. and AG. Multi-task
fine-tuning and cross-domain pre-training may be
alternative methods since the BERT-CDPT model
already contains rich domain-specific information,
and multi-task learning may not be necessary to
improve generalization on related text classifica-
tion sub-tasks.

5.6 Exp-IV: Few-Shot Learning

One of the benefits of the pre-trained model is be-
ing able to train a model for downstream tasks
within small training data. We evaluate BERT-FiT
and BERT-ITPT-FiT on different numbers of train-
ing examples. We select a subset of IMDD train-
ing data and feed them into BERT-FiT and BERT-
ITPT-FiT. We show the result in Figure 4.

This experiment result demonstrates that BERT
brings a significant improvement to small size
data. Further pre-trained BERT can further boost
its performance, which improves the performance
from 17.26% to 9.23% in error rates with only

0.4% training data.

T I I T
BERT-FiT

—_—

—s— BERT-ITPT-FT

15

10 -

Test error rate(%)

| | | | | | |
04 1 2 4 10 20 100

proportions of training examples

Figure 4: Test error rates(%) on IMDb dataset with dif-
ferent proportions of training examples.

5.7 Exp-V: Further Pre-Training on BERT
Large

In this subsection, we investigate whether the
BERTpARge model has similar findings to
BERTpasg. We further pre-train Google’s pre-
trained BERT;Arce model’ on 1 Tesla-V100-
PCIE 32G GPU with a batch size of 24, the max
sequence length of 128 and 120K training steps.
For target task classifier BERT fine-tuning, we set
the batch size to 24 and fine-tune BERT| Arcqr on
4 Tesla-V100-PCIE 32G GPUs with the max se-
quence length of 512.

"https://storage.googleapis.com/bert_models/2018_10_18/
uncased_L-24_H-1024_A-16.zip

As shown in Table 8, ULMFiT performs better
on almost all of the tasks compared to BERTpAsE
but not BERT Arcg. This changes however with
the task-specific further pre-training where even
BERTpAsg outperforms ULMFIT on all tasks.
BERTT, ARGE fine-tuning with task-specific further
pre-training achieves state-of-the-art results.

Model ‘IMDb YelpP. YelpF. AG DBP
ULMFiT | 4.60 2.16 2998 501 0.80

BERTgBASE 5.40 2.28 30.06 525 0.71
+ITPT 4.37 1.92 2942 480 0.68
BERTLARGE | 4.86 2.04 29.25 486 0.62
+ITPT 4.21 1.81 28.62 4.66 0.61

Table 8: Test error rates (%) on five text classification
datasets.

6 Conclusion

In this paper, we conduct extensive experiments to
investigate the different approaches to fine-tuning
BERT for the text classification task. There are
some experimental findings: 1) The top layer of
BERT is more useful for text classification; 2)
With an appropriate layer-wise decreasing learn-
ing rate, BERT can overcome the catastrophic for-
getting problem; 3) Within-task and in-domain
further pre-training can significantly boost its per-
formance; 4) A preceding multi-task fine-tuning
is also helpful to the single-task fine-tuning, but
its benefit is smaller than further pre-training; 5)
BERT can improve the task with small-size data.

With the above findings, we achieve state-of-
the-art performances on eight widely studied text
classification datasets. In the future, we will probe
more insight of BERT on how it works.

References

Rich Caruana. 1993. Multitask learning: A
knowledge-based source of inductive bias. In Pro-
ceedings of the Tenth International Conference on
Machine Learning.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee,
and Andrew Rabinovich. 2017. Gradnorm: Gra-
dient normalization for adaptive loss balancing
in deep multitask networks. arXiv preprint
arXiv:1711.02257.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-

ceedings of the 25th international conference on
Machine learning, pages 160-167. ACM.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Alexis Conneau, Holger Schwenk, Loic Barrault, and
Yann Lecun. 2016. Very deep convolutional net-
works for natural language processing. arXiv
preprint arXiv:1606.01781, 2.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in neural informa-
tion processing systems, pages 3079-3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 562-570.

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A convolutional neural net-

work for modelling sentences. arXiv preprint
arXiv:1404.2188.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294-3302.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188—
1196.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Liyuan Liu, Jingbo Shang, Xiang Ren,
Frank Fangzheng Xu, Huan Gui, Jian Peng,
and Jiawei Han. 2018. Empower sequence la-
beling with task-aware neural language model.
In Thirty-Second AAAI Conference on Artificial

Intelligence.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-

fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. arXiv preprint
arXiv:1901.11504.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations. arXiv preprint arXiv:1803.02893.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142—150. Asso-
ciation for Computational Linguistics.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6294-6305.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of
learning and motivation, volume 24, pages 109—
165. Elsevier.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111-3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532—1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Chao Qiao, Bo Huang, Guocheng Niu, Daren Li, Dax-
iang Dong, Wei He, Dianhai Yu, and Hua Wu. 2018.
Anew method of region embedding for text classi-
fication. In International Conference on Learning
Representations.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Marek Rei. 2017. Semi-supervised multitask learn-
ing for sequence labeling. arXiv preprint
arXiv:1704.07156.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017. Neural speed reading via skim-
rnn. arXiv preprint arXiv:1711.02085.

Dinghan Shen, Yizhe Zhang, Ricardo Henao, Qinliang
Su, and Lawrence Carin. 2018. Deconvolutional
latent-variable model for text sequence matching. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998—-6008.

Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In TREC, vol-
ume 1999, page 82. Citeseer.

Canhui Wang, Min Zhang, Shaoping Ma, and Liyun
Ru. 2008. Automatic online news issue construc-
tion in web environment. In Proceedings of the 17th
international conference on World Wide Web, pages
457-466. ACM.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480-14809.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blun-
som. 2017. Generative and discriminative text clas-
sification with recurrent neural networks. arXiv
preprint arXiv:1703.01898.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In Advances in neural information
processing systems, pages 3320-3328.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649—657.

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan,
Ricardo Henao, and Lawrence Carin. 2017. Decon-
volutional paragraph representation learning. In Ad-

vances in Neural Information Processing Systems,
pages 4169-4179.

