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Abstract

Interactive search, where a set of tags is recom-
mended to users together with search results at each
turn, is an effective way to guide users to iden-
tify their information need. It is a classical se-
quential decision problem and the reinforcement
learning based agent can be introduced as a so-
lution. The training of the agent can be divided
into two stages, i.e., offline and online. Existing
reinforcement learning based systems tend to per-
form the offline training in a supervised way based
on historical labeled data while the online train-
ing is performed via reinforcement learning algo-
rithms based on interactions with real users. The
mis-match between online and offline training leads
to a cold-start problem for the online usage of the
agent. To address this issue, we propose to employ
a simulator to mimic the environment for the offline
training of the agent. Users’ profiles are considered
to build a personalized simulator, besides, model-
based approach is used to train the simulator and is
able to use the data efficiently. Experimental results
based on real-world dataset demonstrate the effec-
tiveness of our agent and personalized simulator.

1 Introduction

Online shopping platforms, such as Amazon, Taobao, and
eBay, have dramatically changed people’s living style. The
volume of products on these platforms has grown tremen-
dously in recent years, which escalate the need for personal-
ized products recommendation. Extensive machine learning
algorithms have been studied [Li ef al., 2011; Clark, 2015;
Yin et al., 2016; Liu et al., 2017] for automatic product
retrieval and recommendation. However, existing research
tends to treat the problem as a static one without modeling
interactions with users. The shopping process in complicated
because users might not be certain with their need in the be-
ginning, therefore, a single-step solution might not be enough
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Figure 1: An illustration for interactive search.

to meet users’ requirement. In order to improve the shopping
experience and help users identify their need quickly, interac-
tive search is emerging. An illustration of interactive search
can be seen in Figure 1. At each turn, the system presents a
set of tags related to the product together with search results
based on user queries. A user can either type new keywords
or click any tag provided to update the request. Based on
users’ feedback, a new set of ranked products and tags would
be returned.

It usually involves several steps for users to identify their
need. Therefore, interactive search can be naturally for-
mulated as a sequential decision problem. Recently, re-
searchers have explored to utilize Reinforcement Learning
(RL) based agent for product recommendation and informa-
tion retrieval [Taghipour and Kardan, 2008; Zhao et al., 2018;
Zheng et al., 2018; Choi et al., 2018]. The training of these
models can be divided into two stages, namely, online and
offline. Existing research usually trains the model in a super-
vised fashion offline based on historical data while the online
learning is performed by interacting with real users via RL al-
gorithms. Though promising results have been reported, the
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optimization objectives of offline training and online learn-
ing are different, which leads to a cold-start problem for the
online usage of the agent. In order to address this issue, we
propose to design a simulator to interact with the agent for its
offline training.

Designing an environment simulator for online shopping
platform is challenging for two reasons. First, different users
have different preferences. Second, the labeled data for the
offline training is usually limited. How to train the agent effi-
ciently becomes a problem. In order to tackle these two chal-
lenges, we introduce a personalized, model-based environ-
ment simulator, which takes the users’ profiles into consider-
ation when mimicking the behavior of real users. In summary,
our contribution is three-fold:

* We propose to employ an environment simulator for the
offline training of the agent in interactive search.

* We propose a multi-task learning approach to model per-
sonalized user preferences based on real user profiles.
Besides, we utilize a model-based RL algorithm to make
full use of limited labeled data.

» Experimental results on a real-world dataset show the
effectiveness of our simulator. By estimating the state
transition probability, the collected dataset can be used
efficiently via our simulator and the agent converges
faster.

2 Task Formulation
2.1 Task

In interactive search (Figure 1), a search session is initialized
by a user with his/her first query. At each turn ¢, the agent re-
turns a set of ranked products (lower part) based on query
q:- Meanwhile, the agent receives a set of candidate tags
Ti = {t1, - ,tn:}', where nf is the number of candidate
tags at turn ¢, and a subset of K (where K < |7;|) ranked tags
(middle part) are recommended to help user search desired
products. If the displayed products cannot meet the user’s de-
mand , the user can either click on one of the displayed tags
or type keywords to update his/her query for a better search
result. Here are some notations used in this paper:

e User u. To model different preferences of users, each
user is represented as a vector u € U with three features,
i.e., the age, gender and purchase power.

* Query q. Each query is represented as a sequence of
words ¢ = (wq, - ,wne) € Q, where wj is the i-th
word in ¢ and n? is the number of words in q.

* Tag t. Eachtag t = (w1, -+ ,w,:) is also a sequence
of words, where n*® is the number of words in tag t.

2.2 MDP Formulation

We cast this problem as a Markov Decision Process (MDP)
from the agent’s perspective. An MDP consists of a tuple of
five elements (S, A, R, P, ) which are defined as follows:

'In this work, candidate tags are derived from logs via informa-
tion retrieval based methods, and tag generation is not concerned.
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Figure 2: Our multi-task model-based simulator, including three
sub-tasks of clicking (binary classification), terminating (binary
classification) and transition (multi-classes classification).

State space S. A state s; = (u,q;) € S, where u € U is the
user who initialized this session and ¢ is the query at turn ¢.
After the user clicks on a tag or types several new keywords,
the state will be updated to s;11 = (u, ¢:+1), where the g1
is updated by appending the new keywords or the words of
the clicked tag to g;.

Action space A. At turn ¢, an action a; = (tf, -+ ,t5) €
A(s;) is a sequence of K tags displayed to the user at turn
t. Given a set of candidate tags 7; at turn ¢, the action space
A(s¢) is the set of all permutations of K tags chosen from 7.

Reward R. After the agent takes an action a; given a state
S¢, 1.€., displaying a sequence of tags to the user, the user can
click one of the tags or type in several keywords. The agent
will receive an immediate reward r, = R(s, a;) according
to the feedback of the user w.

Transition probability P. p(s;y1]st,a:) is the probability
of state transition from s; to s,y after the agent takes an
action a; at state s;.

Discount factor . ~ € [0, 1] defines the discount factor
when we measure the present value of future reward.

In RL, the policy 7 describes the behavior of an agent,
which takes the state s; as input and outputs the probability
distribution over all possible actions m(a|s;), Vas € A(st).
The agent can be trained via RL-based algorithms, where its
goal is to find an optimal policy = which maximizes the dis-
counted cumulative reward.

3 Environment Simulator

In our task, there are three tasks that the environment needs to
consider at each turn, i.e., returning a feedback to the agent,
terminating or continuing the current session and transiting to
a new state. Our simulator is thus designed as Figure 2 that
combines three sub-tasks:

- Click: This sub-task predicts whether one of displayed tags
will be clicked by the real user or not. According to the
predicted result, the immediate reward will be returned to
the agent.

- Terminate: This sub-task decides to terminate or continue
this current search session.

- Transition: At each turn, the state will transit to a new state
and this sub-task models the transitions between states.

As shown in Figure 2, the lower layers are shared across all
three tasks, while the top layers are task-specific.
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Figure 3: State transition with abstract query.

Shared layer. At each turn, the simulator takes the state
s = (u, q) and last agent action @ = (t!,--- ,t%) € A(s) as
input. Considering that the query ¢ and all tags are a sequence
of words respectively, we first use a bidirectional LSTM to
encode the query and tags. Then, the order information be-
tween tags in action q is also important, so another bidirec-
tional LSTM is employed to extract the order information be-
tween tags. The user u, query ¢ and action a are encoded as
h*%, h%? and h®® via a shared layer of our simulator.

Task-specific layer. The task-specific layer of each sub-
task is a two fully connected layers with LeakyReL.U as ac-
tivation function. It takes h®° = [h®" h®7, h*?] as input
and outputs the result of corresponding sub-task. Considering
that all the three sub-tasks are classification problems, we use
cross entropy as the loss function for all the three sub-tasks.
Now, we can write the total loss function of our simulator as:

Le (98) = ('lzr'k (68) + ﬁfrmt (98) + £M’t( ) (1)
where L3, ,(0°), L3,.,..(6°) and L3, (0°) are the losses of

trmt
clicking, terminating and transition sub-tasks respectively.

Transition Probability Approximation

In order to use the collected data efficiently, we approximate
the transition probability matrix of states. Inspired by Serban
et al. [2018], rather than estimating the full transition proba-
bility p(s’|s, a) directly, we approximate it with:

p(s'[s,a) = p(u,¢'lu, q,a) = p"(q'|q, a)
Z pabs |Q7 pabs(q |Z ) (2)
z2'eZ

where w is the user that interacts with the agent in current ses-
sion, and Z is a discrete abstract query space which meets the
condition of |Z| <« |Q|. In other word, we estimate a user-
specific transition probability matrix for each user w. In this
way, the size of original transition probability matrix |A||S|?,
where |S| = |U||Q], will be reduced to | A|[U/||Q|?. Further
more, by introducing the abstract query space Z, it will be
further reduced to |U|(|.A|| Q|| Z| + | Q|| Z]). After the above
two steps, the sample complexity for accurately estimating
the transition probability will be reduced greatly.

The transition is illustrated in Figure 3. Given a user u, a
state s; = (u, ¢;) is sampled with the probability p%, (q:|z:)
conditioned on an abstract query z; € Z. Then the agent
takes an action a; € A(s;) according to it’s policy 7 and re-
ceives the immediate reward r; from the environment. Con-
ditioned on the query ¢; and action a;, the next abstract query
zi+1 is sampled with the probability ply, (zi41|qe, at).
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Algorithm 1: Building real experience buffer with ab-
stract query.

input : f,..(q),D = { u,q,a,7,q ,trmt); }’ -
output: D", D" DY,V 2z € Z,Vu € U.
1 initialize D", D*, DY,Vz € Z,Yu € U as empty set;
2 fori < 1to N do

3 get i-th transition (u, q, a, 7, q’, trmt) from D" and
= (u,q),s" = (u,q);
4 2z fq—2(a);
5 2 faa(d);
6 append (s, z,a,7,s’, 2’ trmt) to D", D¥, DY
respectively;
7 end

The transition distribution of z is approximated via tran-
sition sub-task of our simulator, i.e., p¥ . (2ze41lqe, ar) =
Pabs (Ze41|U, @t, a550°) = Paps(2e41]5¢, a3 0%). In terms of
the transition from z; to ¢, with the probability p%, . (q:|z:),
we just sample a g as ¢; uniformly from the pre-built buffer
DY (see Algorithm 1), where f, . is a known surjective
function mapping from Q to Z. And this will lead to:

Pabs(ql2) =0 Vg€ Q, z€ Zif fy.(q) # 2.  (3)

4 RL-based Agent

In our scenario, an action a; = (t},---,tX) € A(sy) is a
sequence of K tags (or sub-actions), and the number of can-
didate tags 7y is varying at different turns. This makes A(s;)
a discrete dynamic combinatorial action space. Thus, the tra-
ditional architecture of DQN that takes the state as input and
outputs Q-values for each action at the output layer, is not
suitable for this problem. We consider another architecture
of Q-learning, named DRRN [He et al., 2016], which takes
the pair of state s and action a as input and outputs the Q-
value for this pair. The architecture of our agent is similar to
the shared layer of our environment simulator. The user w,
query ¢ and action «a are encoded as %", h*¢ and h** re-
spectively. Then h*", h*? and h®* are concatenated as h®.
h? is then fed into a two fully connected layers to calculate
the Q-value for the pair of the state and the action a.

Given a set of transitions D = {(s,a,r, s’,trmt)i}\f\il
(trmt indicates whether the state s is a terminal state or not),
the objective function is as follows:

Ea(aa) - Es,a,r,s’,twntwp |:(y - Q(S; a; 90,))2] (4)
where:

{r+’y max Q(s',a’;0% ),
y:

if trmt is False.
a’€A(s’)

T, otherwise

where Q(s,a; 0% ) is the target network with parameter 6
from some previous iteration.

The rollout simulation between the simulator and agent is
described in Algorithm 2. Given a state s, the e-greedy agent
takes an action a = max,e 4(s) @(8,a; 0*) with probability
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Algorithm 2: Rollout Simulation

Algorithm 3: Training Algorithm

:Agent (s;0%), Simulator (s,a;0°),U, N°, T,
D, DDy Nze ZNVNueld
output: Updated simulated experience buffer D*®

1 fori < 1to N°do

input

2 sample a user u from U;
3 sample non-terminal transition (s, a, 2,7, s, 2’, trmt)
from D*;
4 81 < S;
5 fort < 1toT — 1do
6 at < Agent (s¢;0%); // e-greedy
7 e, trmiy, pavs (Ze+1 |5t7 ag) +
Simulator (s¢,as; 0°);
8 sample z¢41 with probability Dabs (Ze+1]8t, ar);
9 r¢ < getReward(ct); // rule-based
10 sample s uniformly as s¢41 from D7, 3
11 append (¢, at, T+, S¢+1, trmts) to D°;
12 if trmt, is ture then break;
13 end
14 end
4000
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Figure 4: The distribution of transitions over different user groups.

1 — e and takes an action a € A(s) randomly with probability
€. The training procedure of our agent and simulator is de-
scribed in Algorithm 3. The simulator is pre-trained to mini-
mize the total loss via supervised learning firstly (line 3) and
then minimize the losses of three sub-tasks respectively (line
4). At each step, the agent is first trained with real experience
replay (line 8). Then, the agent interacts with the simulator
(line 9) and simulated experience replay is performed on the
simulated experiences buffer (line 11).

5 Experiments

5.1 Dataset and Abstract Query

Our dataset is derived from the log of Taobao APP 2, which
is processed into transition tuple, i.e., (s,a,r, s, trmt). The
user feature u € R? is the concatenation of three one-hot
vectors, namely, age (3 categories), gender (3 categories in-
cluding null value) and purchase power (3 categories). And
the data distribution is shown in Figure 4. For a transition, if
a user clicked on one of the recommended tags, the reward
r = 1, otherwise » = 0. We have 17,979 transitions with

’The largest E-commerce platform in China.
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input : D, fs_.(s),T,N°,C,m
output: Agent (s;0%)

build D", D“, D},V z € Z,Vu € U with Algorithm 1;

2 initialize Agent (s;6%), Agent (s;60% ),
Simulator (s,a;0°) randomly;

3 pre-train the Simulator (s,a;#°) with D" via supervised
learning to minimize Eq. 1;

4 pre-train the Simulator (s,a;#°) with D" via supervised
learning to minimize £};.;, (0°), Li,m:(6°) and
L3;..(0°) respectively; // parameters in
shared layers keep fixed

5 initialize the simulated experience buffer D° (fixed length)

via Algorithm 2;

-

6 fori < 1toocodo

7 get m minibatches from D";

8 update 0 with m minibatches to minimize Eq. 4;

9 rollout simulation and update D® with Algorithm 2;
10 sample m minibatches from D?;

1 update 0 with m minibatches to minimize Eq. 4;
12 reset 0% = 0% every C steps;

13 if 0 are converged then break;
14 end

| Training | Testing | Validation

Click 1 10,788 3,595 3,596

0 10,788 3,596 3,596

Terminate 1 5,394 1,798 1,798
0 16,182 5,393 5,394

Ave. # of tags 5.93 5.97 5.98
Ave. length of tags 2.56 2.56 2.56
Ave. length of query 5.55 5.20 5.22

Table 1: Description of our dataset, of which 60% for training, 20%
for testing, 20% for validation.

r = 1. However, in terms of transitions with » = 0, we can-
not say that the action a derived from the log is bad because it
is very likely that no click was made by the user in real world
even the action is optimal. In order to reduce the noisy, only
17,980 transitions with » = 0 sampled randomly are used.

As for abstract query Z, we first represent ¢ as the average
vector of words in ¢, then K-means is performed on these
average vectors to assigns a cluster id for each ¢ (20 clusters).
Considering the null value of query g, we have | Z] = 20 +
1 = 21. Thus, the mapping function f,_,.(g) is getting the
cluster id of query q.

5.2 Experiment Setup

Implementation Details. The simulator is pre-trained be-
fore interacting with our agent and fixed unchanged while
interacting with the agent. Each word is represented by
word embedding (200-dim) trained on the historical queries
from other scenarios of Taobao APP (~12.7 million queries,
332,922 words) via word2vec. = 0.2,y = 09,m =
5,N° = 5,T = 20, learning rate is set to 107> and 103
for the training of environment simulator and agent respec-
tively. At each turn, the agent recommends 3 tags to the user
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(i.e., K = 3). The target network of the agent is updated
every 200 steps. The hidden size (both bidirectional LSTM
and fully connected layers) of simulator and agent is 5 and
10. The length of simulated experiences buffer D° is 1000.

Evaluation Metrics

We evaluate our agent for both offline and simulated online
setting and compare it with different training modes. For of-
fline evaluation, we treat the tag clicked by real user as the
positive one. We borrow metrics from information retrieval,
including Mean Average Precision at n (MAP@n), Normal-
ized Discounted Cumulative Gain at n (NDCG@n) and Re-
call at n (Recall@n)’. Assuming that the number of the
clicked tag is 1, we have MAP@1 = NDCG@1 = Recall@1
and only Recall is reported at position 1. It’s worthy noting
that only transitions with a clicked tag is used for offline eval-
uation.

For simulated online evaluation, we let agents trained to
interact with our simulator. The metrics used include aver-
age cumulative reward and average number of turns per ses-
sion. In the scenario of online shopping, it is better that users
spend more time on the platform, so a larger average turn is
preferred.

Baselines
We compare our model with some baselines:

- Random: Given a state s, the random agent always takes
an action a € A(s) randomly.

- DQN: The agent is trained with real experiences replay
without interacting with the simulator (Algorithm 3 with-
out lines 9-11).

- DQN-Sim: The agent is trained via interacting with the
simulator only (Algorithm 3 without lines 7-5).

- DQN-Both: The agent is trained with both real experiences
replay and the simulator (Algorithm 3).

At each training step, DQN-Both is updated with 2m batches
(both real and simulated experiences), while both DQN and
DQN-Sim are updated with m batches, i.e., real and simu-
lated experiences respectively.

5.3 Experimental Results

In this section, we first compare our DQN agent with Random
agent to evaluate the performance of our RL-based agents.
Then, we compare the DQN agent with both DQN-Sim agent
and DQN-Both agent to show that the training of the agent is
converged faster and its performance is better with the assis-
tance of the simulator.

Figure 5 shows the Recall of different agents at position 1,
2 and 3. We can see that all the RL-based agents outperform
the random agent greatly on all metrics, which demonstrates
the performance of our RL-based agents.

Table 2 shows the simulated online performance of dif-
ferent agents at training step = {4K, 10K}. As we can see,
the two simulator-involved agents outperform the DQN agent
in terms of both reward gained and number of turns lasted

3Considering that there exists only one positive tag for one query
(i.e., one transition), we use Recall@n rather than Precision at n
(Recall@n=nxP@n in this work).
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Step Agent Reward Turn
DQN 4.147 0582  9.358 £1.072
4K DQN-Sim  5.721 40547  12.284 £1.011
DQN-Both  6.398 +0.183  13.510 +0.347
DOQN 6.266 +0.166  13.287 40.288
10K DQN-Sim  6.432 +0.088  13.640 +0.152
DQN-Both  6.395 +0.117  13.544 +0.238

Table 2: The performance of different agents at training step = {4K,
10K}) on 1K simulated sessions. The transition buffer D, D} for
rollout simulation are built from testing set.

=R DQN

——— DQN-Sim

—— DQN-Both
Random

0 2000 4000 6000 8000 10000
Training Step

Figure 5: Learning curve of different agents on Recall. The A, x
and o marked lines are the metrics at position 1, 2 and 3 respectively.
The performance of different agents are evaluated on validation set
(only transitions with click = 1) during the training of agents. The
NDCG and MAP curve have similar trends with Recall curve due to
the high relevance.

(the higher the better). At training step = 4K, the DQN-Both
outperforms the two other agents. However, at training step
= 10K, DQN-Sim agent reaches the best performance. The
reason is that our environment simulator cannot mimic the
behavior of real environment perfectly, which results in a dy-
namic environment for DQN-Both agent when replaying both
real experiences and simulated experiences, making it diffi-
cult for DQN-Both agent to learn a optimal policy for both
the real environment and simulated environment.

Table 3 shows the offline performance of different agents
at training step = {2K, 4K, 10K}. At training step = 2K,
4K, both DQN-Sim agent and DQN-Both agent outperform
DQN agent in a large margin. As the training continues, the
gap between the DQN agent and the two simulator-involved
agents is decreasing. The DQN-Sim agent, accessing the real
data indirectly through our simulator, achieves comparable
performance to DQN agent which indicates the effectiveness
of our simulator.

More importantly, the DQN-Sim agent converges much
faster than DQN agent during the training. We attribute this
to the trade-off between exploration and exploitation. In other
words, the real experiences buffer collected in advance is
fixed during the training of the agents. Thus, the DQN agent
is trained with a fixed buffer and there is no exploration of
action space and state space. While the DQN-Both agent and
DQN-Sim agent are trained via interacting with the simulator,
during which they can have a better exploration.
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Step Agent Recall@1 Recall@2 Recall@3 NDCG@2 NDCG@3 MAP@2 MAP@3
DQN 1445 £.0213 3328 £.0270 5305 £.0282  .2633 +.0234 3622 +£.0239 2387 £.0225  .3046 +.0228
2K DQN-Sim  .1877 +.0176 3947 +.0179 5880 +£.0238  .3183 +.0177 4149 £.0198 .2912 +.0176  .3556 +.0188
DQN-Both  .2279 +.0194  .4472 +.0280 .6552 +.0171  .3663 +£.0244 4703 +.0186 .3375 £.0232 .4069 +.0193
DQN 1864 £.0204 3949 +.0199  .6113 +.0251  .3179 £.0200 4261 +.0226 .2906 +.0200 .3628 +.0218
4K  DOQN-Sim  .2233 +.0076  .4305 +£.0068 .6471 £.0067 .3540 £.0062 .4623 +£.0059 .3269 £+.0063 .3991 +.0060
DQN-Both  .2235 +.0101  .4414 +.0131  .6573 £.0081 .3610 +.0111  .4689 +.0085 .3325 +.0106 .4044 4.0089
DQN 2233 +£.0086 4451 £.0095 .6773 +.0056 .3632 +£.0089 .4793 £.0051 .3342 +.0088 .4116 +.0060
10K  DQN-Sim  .2318 £.0132  .4498 £.0163 .6767 £.0072  .3693 +.0145 .4828 +.0101  .3408 £.0140 .4164 +.0112
DQN-Both  .2369 +.0085 .4536 +.0060 .6843 +.0058 .3736 +.0060 .4890 +.0053 .3452 +.0063 .4222 4.0057

Table 3: The performance of different agents at training step = {2K, 4K, 10K} on testing set (only transitions with click = 1). The difference
of Recall@1 between DQN and DQN-Sim/DQN-Both evaluated at the same training step is statistically significant (The one-tailed p < 0.1).

#of rollouts | 1 20 50 100
94% 16.6% 25.7%

Percentage | 3.9%

Table 4: Percentage of action space explored by the agent in terms
of # of rollouts. # of rollouts is the repeated times the agent takes
an action with e-greedy strategy for each turn-level transition. And
the percentage is the average percentage of the number of different
actions taken by the agent.

Sub-task  Precision  Recall F1-Score
Click 0.6853 0.6741 0.6693
Terminate 0.7170 0.6130 0.6386
Transition 0.3377 0.2742 0.2648

Table 5: The performance of our simulator on three tasks.

We perform an experiment to reveal how the exploration
can be enforced with the assistance of our simulator. We
present the percentage of action space explored by the agent
in terms of number of rollouts. When the number of rollouts
equals to 1, it is the same as DQN with fixed real experiences.
As shown in Table 4, we can see that only 3.9% of actions
can be visited without experiences generated by the simula-
tor. While the percentage of visited actions increases greatly
when the simulator generated experiences are involved. The
number increases with the number of rollouts.

Performance of environment simulator. The performance
of our simulator on three sub-tasks are reported in Table 5.
We use three metrics including recall, precision and F1 score.

6 Related Work

RL-based algorithms have been applied to different scenarios
of recommendation. [Zhao et al., 2018] applies actor-critic al-
gorithm to solve items recommendation involving the 2-D or-
der between items in one page. [Zheng et al., 2018] integrates
user behavior and profile information into state representation
for online news recommendation with RL-based agent. [Choi
et al., 2018] introduces an RL-based framework for recom-
mendation where states are represented as grid-world ob-
tained from bi-clustering to reduce the state space and action
space. [Chen et al., 2018] employed stratified sampling and
regret approximation to stabilize the learning of agent for rec-
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ommendation.

To our knowledge, the agenda-based simulator [Schatz-
mann et al., 2007] is the first simulator for RL-based tasks,
and have been widely applied in dialogue system [Wei et al.,
2018; Li et al., 2017; Peng et al., 2017]. 1Tt is rule-based,
where the handcrafted action space of environment simulator
should be pre-defined and cannot be generalized to complex
tasks (e.g., online shopping). From the perspectives of simu-
lator and agent, the interacting process can both be treated as
a sequential decision problem respectively. Thus, a simula-
tor could be learned via inverse reinforcement learning based
on experts’ (users’) demonstrations [Chandramohan er al.,
2011]. What’s more, the sequence-to-sequence architecture
could also be employed to model the user simulator [Asri et
al., 2016]. [Peng et al., 2018] propose a multi-task user simu-
lator to interact with the agent. Instead of transiting into next
state directly, it selects one of the pre-defined user actions and
an additional state tracker is needed to update the state.

How to train the agent with collected data efficiently has
attracted a lot of research. [Lu et al., 2018] introduce two
approaches for data augmentation in task-completion tasks so
that the agent could be trained more efficiently. Considering
the model-based RL algorithms could learn a better policy
from less data, state abstraction have been used to reduce the
complexity of model-based RL methods [Serban et al., 2018;
Jiang et al., 2015].

7 Conclusion and Future Work

In this work, we introduce a multi-task model-based environ-
ment simulator for online shopping platform to train the RL-
based agent via interactions. Experimental results on real-
world dataset demonstrate that the agent can converge faster
with the assistance of the simulator. Further analysis shows
that agent is able to explore larger action space with experi-
ences generated by the simulator. In future, we will explore to
improve the performance of the simulator to provide a better
simulation of the environment.
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