
DropAttention: A Regularization Method for
Fully-Connected Self-Attention Networks

Lin Zehui
Fudan University

linzh18@fudan.edu.cn

Pengfei Liu ∗
Fudan University

pfliu14@fudan.edu.cn

Luyao Huang
Fudan University

lyhuang18@fudan.edu.cn

Junkun Chen
Fudan University

jkchen16@fudan.edu.cn

Xipeng Qiu †
Fudan University

xpqiu@fudan.edu.cn

Xuanjing Huang
Fudan University

xjhuang@fudan.edu.cn

Abstract

Variants dropout methods have been designed for the fully-connected layer, con-
volutional layer and recurrent layer in neural networks, and shown to be effective
to avoid overfitting. As an appealing alternative to recurrent and convolutional
layers, the fully-connected self-attention layer surprisingly lacks a specific dropout
method. This paper explores the possibility of regularizing the attention weights in
Transformers to prevent different contextualized feature vectors from co-adaption.
Experiments on a wide range of tasks show that DropAttention can improve perfor-
mance and reduce overfitting.

1 Introduction

As an effective and easy-to-implement regularization method, Dropout has been first designed for
fully-connected layers in neural models Srivastava et al. [2014]. Over the past few years, a host of
variants of dropout have been introduced. For recurrent neural networks (RNNs), dropout is only
applied to the input layers before the successful attempt in Krueger et al. [2016]; Semeniuta et al.
[2016]; Gal and Ghahramani [2016]. Also, a dozen of dropout methods for convolutional neural
networks (CNNs) have been proposed in Tompson et al. [2015]; Huang et al. [2016]; Larsson et
al. [2016]; Gastaldi [2017]; Ghiasi et al. [2018]; Zoph et al. [2018]; Yamada et al. [2018]. On
the other hand, fully-connected self-attention neural networks, such as Transformers Vaswani et al.
[2017], have emerged as a very appealing alternative to RNNs and CNNs when dealing with sequence
modelling tasks.

Although Transformers incorporate dropout operators in their architecture, the regularization effect
of dropout in the self-attention has not been thoroughly analyzed in the literature.

The success of the adaption of dropout for fully-connected, convolutional and recurrent layers gives
us a tantalizing hint that a more specific dropout for self-attentional operators might be needed.
∗Co-mentoring
†Corresponding author

Preprint. Under review.

ar
X

iv
:1

90
7.

11
06

5v
2 

 [
cs

.C
L

] 
 2

6 
Ju

l 2
01

9



Methods Dropped Objects Spaces Layers

Dropout Srivastava et al. [2014] Unit Hidden FCN
DropConnect Wan et al. [2013] Weight Hidden FCN
SpatialDropout Kalchbrenner et al. [2014] Unit Hidden CNN
Cutout DeVries and Taylor [2017] Unit Input CNN
DropEmb Gal and Ghahramani [2016] Weight Input Lookup
Variational Dropout [Gal and Ghahramani, 2016] Unit Hidden RNN
Zoneout Krueger et al. [2016] Unit Hidden RNN
DropBlock Ghiasi et al. [2018] Region of Units Hidden CNN

DropAttention Region of Weights Input& Hidden Self-Attention

Table 1: A comparison of published methods for dropout. “Unit” denotes the neuron of a hidden
vector while “Weight” represents the learnable parameter or attention score. “FCN” refers to the
fully-connected layer.

Additionally, the original publicly code3 of Transformer Vaswani et al. [2017] with Dropout trick
also provides the evidence for this work, although it’s less understood why it works and how it
might be extended. In this paper, we demonstrate the benefit of dropout in self-attention layers
(DropAttention) with two key distinctions compared with the dropout used in fully-connected layers
and recurrent layers. The first is that DropAttention randomly sets attention weights to zero, which can
be interpreted as dropping a set of neurons along different dimensions. Specifically, DropAttention
aims to encourage the model to utilize the full context of the input sequences rather than relying
solely on a small piece of features. For example, for sentiment classification, the prediction is usually
dominated by one or several emotional words, ignoring other informative patterns. This can make the
model overfit some specific patterns. In fully-connected and recurrent layers, dropout discourages the
complex co-adaptation of different units in the same layer, while DropAttention prevents different
contextualized feature vectors from co-adapting, learning features which are generally helpful for
task-specific prediction. Secondly, in addition to dropping out individual attentional units, we also
explore the possibility of operating in contiguous regions. It is inspired by DropBlock Ghiasi et al.
[2018] where units in a contiguous region of a convolutional feature map are discarded together. It is
a more effective way of dropping for attention layers, since a semantic unit are usually composed
of several spatially consecutive words. Experiments on a wide range of tasks with different-scale
datasets show that DropAttention can improve performance and reduce overfitting.

2 Related Work

We present a summary of existing models by highlighting differences among dropped object, spaces
and layers as shown in Table 1. The original idea of Dropout is proposed by Srivastava et al. [2014] for
fully-connected networks, which is regarded as an effective regularization method. After that, many
dropout techniques for specific network architectures, such as CNNs and RNNs, have been proposed.
For CNNs, most successful methods require the noise to be structured Tompson et al. [2015]; Huang
et al. [2016]; Larsson et al. [2016]; Gastaldi [2017]; Ghiasi et al. [2018]; Zoph et al. [2018]; Yamada
et al. [2018]. For example, SpatialDropoutKalchbrenner et al. [2014] is used to address the spatial
correlation problem. DropConnect Wan et al. [2013] sets a randomly selected subset of weights
within the network to zero. For RNNs, Variational Dropout Gal and Ghahramani [2016] and ZoneOut
Krueger et al. [2016] are most widely used methods. In Variational Dropout, dropout rate is learned
and the same neurons are dropped at every timestep. In ZoneOut, it stochastically forces some hidden
units to maintain their previous values instead of dropping. Different from these methods, in this
paper, we explore how to drop information on self-attention layers.

3https://github.com/tensorflow/tensor2tensor

2



3 Background

3.1 Transformer Architecture

The typical fully-connected self-attention architecture is the Transformer Vaswani et al. [2017], which
uses the scaled dot-product attention to model the intra-interactions of a sequence. Given a sequence
of vectors H ∈ Rl×d, where l and d represent the length of and the dimension of the input sequence,
the self-attention projects H into three different matrices: the query matrix Q, the key matrix K and
the value matrix vector V , and uses scaled dot-product attention to get the output representation.

Q,K, V = HWQ, HWK , HWV (1)

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V, (2)

where WQ,WK ,WV ∈ Rd×dk are learnable parameters and softmax() is performed row-wise.

To enhance the ability of self-attention, multi-head self-attention is introduced as an extension of the
single head self-attention, which jointly model the multiple interactions from different representation
spaces,

MultiHead(H) = [head1; ...; headk]WO, (3)

where headi = Attn(HWQ
i , HW

K
i , HWV

i ), (4)

where WO,WQ
i ,W

K
i ,WV

i (i ∈ [1, h]) are learnable parameters. Transformer consists of several
stacked multi-head self-attention layers and fully-connected layers. Assuming the input of the
self-attention layer is H , its output H̃ is calculated by

Z =H + MultiHead(layer-norm(H)), (5)

H̃ =Z + MLP(layer-norm(Z)), (6)

where layer− norm(·) represents the layer normalization Ba et al. [2016] .

Besides, since the self-attention ignores the order information of a sequence, a positional embedding
PE is used to represent the positional information.

3.2 Dropout

Dropout Srivastava et al. [2014] is a popular regularization form for fully-connected neural network.
It breaks up co-adaptation between units, therefore it can significantly reduce overfitting and improve
test performance. Each unit of a hidden layer h(l) ∈ Rd is dropped with probability p by setting it to
0.

h(l+1) = f(Wm� h(l)), (7)

where m ∈ {0, 1}d is a binary mask vector with each element j drawn independently from mj ∼
Bernoulli(p), and � denotes element-wise production.

DropConnect Wan et al. [2013] is a generalization of Dropout. It randomly drops hidden layers
weights instead of units. Assume M is a binary mask matrix drawn from Mij ∼ Bernoulli(p), W
is the hidden layer weights. Then DropConnect can be formulated as,

h(l+1) = f((W �M)h(l)) (8)

Dropout essentially drops the entire column of the weight matrix. Therefore, Dropout can be regarded
as a special case of DropConnect, where a whole column weight is dropped.

Since Dropout and DropConnect achieve great success on fully-connected layer, a natural motivation
is whether a specific dropout method is needed for the fully-connected self-attention networks.
Experiments conducted shows that a new dropout method designed for fully-connected self-attention
networks can also reduce overfitting and obtain improvements.

3



(a) DropAttention(c) (b) DropAttention(e)

Figure 1: Illustration of DropAttentions over a 5× 5 attention weight matrix. The “yellow” elements
are dropped. The size of drop window is w = 2 and drop rate is p = 0.4.

4 DropAttention

In this section, we will introduce our attention regularization method: DropAttention.

Given a sequence of vectors H ∈ Rl×d, the fully-connected self-attention layer can be reformulated
into

H̃ = f(ΛV ), (9)

where Λ = softmax(QKT

√
dk

), f(·) is a residual nonlinear function defined by Eq. (6) and Q,K, V is
calculated by Eq. (1).

The output of i-th position is

h̃i = f(

l∑
j=1

λijvj), (10)

where h̃i is the i-th row vector of H̃ and vj is the j-th row vector of V . λij is the entry of Λ.

With this formulation, we can connect the self-attention layer to the fully-connected layer with
two differences. The first difference is the weight matrix Λ is dynamically generated. The second
difference is that the basic unit is a vector rather than a neuron.

Due to the similarity between fully-connected layer and self-attention layer, we can introduce the
popular dropout methods for FCN to self-attention mechanism. In detail, we propose two dropout
methods for the fully-connected self-attention layer: DropAttention(c) and DropAttention(e).

1) DropAttention(c) means to randomly drop “column” in attention weight matrix, which is a
simple method similar to the standard Dropout Srivastava et al. [2014]. We randomly drop the unit
vj , 1 ≤ j ≤ l. Note that vj here is a vector instead of a single neuron.

2) DropAttention(e) means to randomly drop “element” in attention weight matrix, which is a
more generalized method of the DropAttention(c). Similar to DropConnect Wan et al. [2013],
DropAttention(e) randomly drops elements in attention weights matrix Λ. DropAttention(c) can be
regarded as a special case of DropAttention(e) in which a whole column of Λ is dropped.

Besides the basic dropping strategies, we also augment the DropAttentions with two functions.

4.1 Dropping Contiguous Region

Inspired by DropBlock Ghiasi et al. [2018], we drop contiguous region of the attention weights matrix
instead of independent random units. The behind motivation is based on distributional hypothesis
Harris [1954]: words that are used and occur in the same contexts tend to purport similar meanings.
In Transformer Vaswani et al. [2017] where multi-layer structure is used, when dropping independent
random units, information correlated with the dropped input can still be restored in the next layer
through surrounding words, which may cause the networks overfitting. Dropping the whole semantic
unit consisting of several words can be a more effective way of dropping out.

Therefore, there are two hyperparameters in DropAttention: window size w and drop rate p. The
window size w is the length of contiguous region to be dropped, while p controls how many units to

4



Algorithm 1 DropAttention(e)

Require: Attention weight matrix Λ, window size w, drop rate p
1: if Inference then
2: return Λ
3: end if
4: γ = p/w;
5: Sample mask matrix M randomly, where Mij ∼ Bernoulli(γ);
6: For each zero position Mij , expand the mask with the span length of w, Mi,j : Mi,j+w−1, and

set all the values in the window to be 0;
7: Apply mask: Λ = M � Λ;
8: for all row vector of Λ: λj do
9: Normalized rescale: λj = λj/sum(λj)

10: end for

Table 2: Classification dataset statistics, #classes denotes the number of classes, and #documents
represents the number of documents.

Dataset #classes #documents

CR 2 3,993

QC 6 5,052

SUBJ 2 10,000

MR 2 10,661

AG’s News 4 127,600

Yelp2013 5 335,018

drop. In standard Dropout Srivastava et al. [2014], the binary mask is sampled from the Bernoulli
distribution with the probability of p. Since DropAttention will expand every zero entry in the binary
mask to be window with size w. Therefore, we just require to drop p/w windows.

4.2 Normalized Rescaling

To ensure that the sum of attention weights to remain 1 after applying DropAttention, we re-normalize
the attention weights after dropout operations. While traditional Dropout also has rescaling operation
where neuron weights are divided by 1− p, there is no guarantee that the sum of attention weights
after rescaling remains 1. Experiments on classification task (see sec. 5.1) show that DropAttention
with normalized rescaling outperforms traditional dropout rescaling. And in practice with normalized
rescale, training process can be more steady compared to traditional rescaling.

Figure 1 shows two proposed DropAttention methods. The Pseudocode of DropAttention(e) is
described in Algorithm 1. DropAttention(c) is adopted in the similar way to DropAttention(e).

5 Experiment

We evaluate the effectiveness of DropAttentions on 4 different tasks: Text Classification, Sequence La-
beling, Textual Entailment and Machine Translation. We also conduct a set of analytical experiments
to validate properties of the networks.

5.1 Text Classification

We first evaluate the effectiveness of DropAttention on a couple of classification datasets ranging
from small, medium and large scale. Statistics of datasets are listed in Table 2. All datasets are split
into training, development and testing sets.

Yelp13 reviews: collected from the Yelp Dataset Challenge in 2013, which have 5 levels of ratings
from 1 to 5. We use the same Yelp datasets slitted and tokenized in Tang et al. [2015]. MR: Movie

5



Table 3: Text classification, in percentage. p represents dropout rate, w represents window size. The
column of “Norm?” indicates the results of normalized rescaling or traditional rescaling 1− p. We
only represents the best results in the table and their corresponding hyperparameters.

Model Norm? CR SUBJ MR QC AG’s News Yelp13

w/o DropAttention 80.00 93.30 76.92 88.40 88.13 61.49

p=0.4,w=2 p=0.2,w=3 p=0.3,w=2 p=0.3 w=1 p=0.4 w=1 p=0.4 w=1

DropAttention(c) Y 82.75 94.10 78.80 90.80 88.87 62.34
N 78.25 93.10 77.30 89.60 88.49 62.27

p=0.2,w=3 p=0.3,w=2 p=0.3,w=2 p=0.3,w=2 p=0.2,w=2 p=0.2 w=1

DropAttention(e) Y 81.25 93.50 78.51 89.60 88.66 61.79
N 81.25 93.50 75.33 88.80 88.47 61.46

Table 4: The sizes of the sequence labeling datasets in our experiments, in terms of the number of
tokens.

Dataset Task Train Dev. Test

CoNLL 2000 Chunking 211,727 - 47,377

CoNLL 2003 NER 204,567 51,578 46,666

PTB POS 912,344 131,768 129,654

reviews with two classes Pang and Lee [2005]. SUBJ: Subjectivity dataset containing subjective
and objective instance. It is also a 2 classes dataset Pang and Lee [2004]. CR: Customer reviews
of various products with positive and negative sentiments. AG’s News: A news topic classification
with 4 classes created by Zhang et al. [2015]. QC: The TREC questions dataset involves six different
question types Li and Roth [2002].

Detail model configurations are given in Appendix. We use accuracy as evaluation metrics. Results of
all datasets are listed in Table 3. It shows that DropAttentions can significantly improve performance
on a wide range of datasets of small, medium and large scale. Besides, note that when comparing
normalized rescaling with traditional rescaling under the same DropAttention hyperparameters, Table
3 shows that normalized rescaling can generally obtain better performance.

For classification tasks, we find that larger dropout rate and smaller window size are preferred for
DropAttention(c) while smaller dropout rate and larger window size are preferred for DropAtten-
tion(e). And DropAttention(c) can generally obtain higher performances than DropAttention(e) in
classification tasks.

5.2 Sequence Labeling

We also evaluate the effectiveness of DropAttention on sequence labeling. We conducted experiments
by following the same settings as Yang et al. [2016]. We use the following benchmark datasets in
our experiments: Penn Treebank (PTB) POS tagging, CoNLL 2000 chunking, CoNLL 2003 English
NER. The statistics of the datasets are described in Table 4.

We process sentences with Transformer encoder. After encoding, we feed the output vector into a
fully-connected layer. Detail model hyperparameters are given in Appendix.

Results are shown in Table 5. In Table 5, all best results are under the hyperparameters of p =
0.3, w = 3 except for DropAttention(e) in POS task with p = 0.2, w = 2. It shows that both
DropAttention(c) and DropAttention(e) can obtain significant improvements. Our model achieve
0.29 accuracy, 0.40 F1 score, 1.76 F1 score improvements in POS, NER and Chunking respectively.
And we find that larger dropout rate and larger window size are generally preferred.

6



Table 5: Sequence labeling results. pmeans dropout
rate, w means window size. NER and Chunking
are evaluated by F1 score while POS is evaluated
by accuracy. Table shows the best results and their
corresponding hyperparameters.

Transformer POS NER Chunking
w/o DropAttention 95.92 87.23 89.09

p=0.3 w=3 p=0.3 w=3 p=0.3 w=3

DropAttention(c) 96.21 88.51 90.56

p=0.2,w=2 p=0.3,w=3 p=0.3,w=3

DropAttention(e) 96.17 88.63 90.85

Table 6: Machine Translation performances
of our models under different dropping set-
tings. p stands for drop rate and w represents
window size.

Model HyperParam BLEU
p w

w/o DropAttention 0 0 27.30

DropAttention(c)

0.1 1 27.96
0.1 2 27.87
0.1 3 27.98
0.2 1 27.87
0.2 2 28.04
0.2 3 27.95

DropAttention(e)

0.1 1 28.16
0.1 2 28.03
0.1 3 28.07
0.2 1 27.92
0.2 2 28.32
0.2 3 27.87

5.3 Textual Entailment

We use the biggest textual entailment dataset, SNLI Bowman et al. [2015] corpus to evaluate the
effectiveness of DropAttention on this task. SNLI is a collection of sentence pairs labeled for
entailment, contradiction, and semantic independence. A pair of sentences called premise and
hypothesis will be fed to the model, and the model will be asked to tell the relation of two sentences.
It is also a classification task, and we measure the performance by accuracy.

We process the hypothesis and premise with the same Transformer encoder, which means that the
hypothesis encoder and the premise encoder share the same parameters. We use max pooling to
create a simple vector representation from the output of transformer encoder. After processing two
sentences respectively, we use the two outputs to construct the final feature vector, which consisting
of the concatenation of two sentence vectors, their difference, and their elementwise product Bowman
et al. [2016]. We then feed the final feature vector into a 2-layer ReLU MLP to map the hidden
representation into classification result. Detail model hyperparameters are given in Appendix.

Results are listed in Table 7. For full results with different hyperparameters please refer to Ap-
pendix. Experiments show that DropAttention(c) and DropAttention(e) can significantly improve
performances.

5.4 Machine Translation

We further demonstrate the effectiveness of DropAttention on translation tasks. We conduct exper-
iments on WMT’ 16 En-De dataset which consists of 4.5M sentence pairs. We follow Ott et al.
[2018] by reusing the preprocessed data, where Ott et al. [2018] validates on newstest13 and tests
on newstest14, and uses a vocabulary of 32K symbols based on a joint source and target byte pair
encoding (BPE; Sennrich et al. [2015]). We measure case-sensitive tokenized BLEU. We use the
fairseq-py toolkit 4 re-implementation of Transformer Vaswani et al. [2017] model. We follow the
configuration of original Transformer base model Vaswani et al. [2017]. See detail configuration in
Appendix. DropAttention with different hyperparameters is applied to attention weights.

Table 6 shows the BLEU score for DropAttention with different hyperparameters. The results
show that DropAttention can generally obtain higher performance compared with baseline without
DropAttention. With DropAttention(e) of p = 0.2, w = 2, the model can outperform the baseline by
a large margin, reaching a BLEU score of 28.32. For DropAttention(c), the model also reaches the
best BLEU score with p = 0.2, w = 2.

4https://github.com/pytorch/fairseq

7



Table 7: SNLI best results and the
corresponding hyperparameters.

Transformer SNLI
w/o DropAttention 83.36

p=0.2 w=3

DropAttention(c) 84.38

p=0.5,w=1

DropAttention(e) 84.48

Table 8: Classification and Machine Translation perfor-
mances. Classification performances are evaluated by ac-
curacy while Machine Translation by BLEU. Baseline is
the model without any Dropout techniques.

Transformer Classification MT
baseline 88.13 25.42

+ Standard Dropout 88.43 27.3
+ DropAttention 88.50 26.3
+ Dropout+DropAttention 88.70 28.32

p=
0.3

w=3

p=
0.3

w=2

p=
0.3

w=1
w/o

p=
0.2

w=1

p=
0.2

w=2

p=
0.2

w=3

1.81

1.82

1.82

E
nt

ro
py

(a) Entropy

p=
0.3

w=3

p=
0.3

w=2

p=
0.3

w=1
w/o

p=
0.2

w=1

p=
0.2

w=2

p=
0.2

w=3
0.74

0.75

0.75

0.75

D
is

ag
re

em
en

t

(b) Disagreement

p=
0.3

w=3

p=
0.3

w=2

p=
0.3

w=1
w/o

p=
0.2

w=1

p=
0.2

w=2

p=
0.2

w=3

3.32

3.33

3.33

3.34
·10−2

D
iv

(c) Div

Figure 2: The histogram Disagreement, and Div. With the drop rate and window size increasing, both
metrics increase accordingly. Note that if the value of Div and Disagreement gets large, it means that
the difference of attention weights between heads is small.

There are two insights from this experiment. The first is that a regularization of self-attention works to
improve the generalization ability even for the large-scale data. The second is that the DropAttention
is complementary to the standard dropout.

5.5 Complementarity to stardard Dropout

We also explore the effect of DropAttention combining with standard Dropout. We conduct experi-
ments on classification tasks and machine translation tasks. We choose AG’s News as classification
dataset and WMT’ 16 En-De as Machine Translation dataset. Same hyperparameters as 5.1 and
5.4 are used. Table 8 shows that when combining DropAttention with Dropout, models can obtain
higher performances compared to implementing Dropout or DropAttention alone. It implys that
DropAttention is complementary to stardard Dropout.

6 Analysis

In this section, we study the impact of DropAttention on the behavior of model quantitatively. We use
three metrics to evaluate the model based on the attention weights: Div, Disagreement and Entropy.

Div SupposeA is the attention weights matrix, where every row i corresponds to the attention weights
vector produced by the ith attention head. Div is defined as,

Div =
∥∥(AAT − I

)∥∥2
F
, (11)

where ‖ · ‖F represents the Frobenius norm of a matrix and I stands for identity matrix. It was
first introduced by Lin et al. [2017] as a penalization term which encourages the diversity of weight
vectors across different heads of attention. If Div gets large, it means multi-heads attention weights
distributions have large overlap.

8



Disagreement We use the same notations above. Ai stands for the ith row of the attention matrix,
then the Disagreement is expressed as,

Disagreement =
1

h2

h∑
i=1

h∑
j=1

Ai ·Aj

‖Ai‖ ‖Aj‖
, (12)

where h denotes the number of heads. It was proposed by Li et al. [2018], which also expects to
encourage the diversity of the model. The Disagreement is defined as calculating the cosine similarity
cos(·) between the attention weights vector pair produced by two different heads. The smaller score
is, the more diverse different attention heads are.

Entropy is used to evaluate the diversity within one head. Ai
j is the jth element of the attention

weights vector produced by ith head. Entropy of attention weights is defined as,

Ei = −
∑
j

Ai
j logAi

j . (13)

If entropy gets small, it represents that the head focus on a small fraction of words.

6.1 Effect on Intra-Diversity

We first observe the impact of DropAttention on intra-diversity, namely attention distribution within
one head. Figure 2a shows the multi-head entropy of models for classification task. When the drop
rate and window size increasing, the entropy increase accordingly. This suggests DropAttention can
effectively smoothen the attention distribution, making the model utilize more context. This can
subsequently increase robustness of the model.

6.2 Effect on Inter-Diversity

We further study the impact of DropAttention on inter-diversity, namely the difference between multi
heads. Figure 2b and 2c show the Disagreement and Diveristy of multi heads, respectively. It shows
that with larger drop rate and window size, Div and Disagreement are larger accordingly. Note that
large Diversity and Disagreement means that the difference of attention distribution between heads is
small. This is due to the smoother attention distribution within one head. With less sharply different
multi-heads, the model does not have to rely on a single head to make predictions, which means that
all heads have a smoother contribution to the final predictions. This can increase robustness of the
model.

6.3 Effect on Sparsity

Similar to Srivastava et al. [2014], we also observe the effect of DropAttention on sparsity. Since
the attention weights are summed up to 1, we only collect the largest attention weights of all heads.
To eliminate the effect of sentence length, attention weights are multiplied by the sentence length.
Figure 3 shows the distribution of largest attention weights, where model with DropAttention has
smaller attention weights compared to model without DropAttention. This phenomenon is consistent
with Srivastava et al. [2014] where model with dropout tends to allocate smaller activation weights
compared to model without dropout.

7 Conclusion and Discussion

In this paper, we introduce DropAttention, a variant of Dropout designed for fully-connected self-
attention network. Experiments on a wide range of tasks demonstrate that DropAttention is an
effective technique for improving generalization and reducing overfitting of self-attention networks.
Several analytical statistics give the intuitive impacts of DropAttention, which show that applying
DropAttention can help model utilize more context, subsequently increasing robustness.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

9



Figure 3: The histogram of largest attention weights distribution. x-axis represents the attention
weights value multiplied by the sentence length, y-axis represents the number of corresponding
attention weights. Model with DropAttention tends to allocate smaller attention weights compared to
model without DropAttention.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning, and
Christopher Potts. A fast unified model for parsing and sentence understanding. arXiv preprint
arXiv:1603.06021, 2016.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In Advances in neural information processing systems, pages 1019–1027, 2016.

Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.
Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolutional

networks. In Advances in Neural Information Processing Systems, pages 10750–10760, 2018.
Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with

stochastic depth. In European conference on computer vision, pages 646–661. Springer, 2016.
Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for

modelling sentences. In Proceedings of ACL, 2014.
David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary

Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, and Chris Pal. Zoneout: Regularizing rnns
by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305, 2016.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648, 2016.

Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1, pages 1–7. Association for Computational
Linguistics, 2002.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R Lyu, and Tong Zhang. Multi-head attention with
disagreement regularization. arXiv preprint arXiv:1810.10183, 2018.

Zhouhan Lin, Mo Feng, Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. A structured self-attentive
sentence embedding. arXiv preprint arXiv:1703.03130, 2017.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
CoRR, abs/1806.00187, 2018.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of the 42nd annual meeting on Association for
Computational Linguistics, page 271. Association for Computational Linguistics, 2004.

10



Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pages 115–124. Association for Computational Linguistics, 2005.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without memory loss.
arXiv preprint arXiv:1603.05118, 2016.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015 conference on empirical methods in natural
language processing, pages 1422–1432, 2015.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object
localization using convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 648–656, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000–6010, 2017.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International Conference on Machine Learning, pages 1058–1066,
2013.

Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop regularization
for deep residual learning. arXiv preprint arXiv:1802.02375, 2018.

Zhilin Yang, Ruslan Salakhutdinov, and William Cohen. Multi-task cross-lingual sequence tagging
from scratch. arXiv preprint arXiv:1603.06270, 2016.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pages 649–657, 2015.

Barret Zoph, Vijay VasudSentiment analysis using subjectivity summarizationevan, Jonathon Shlens,
and Quoc V Le. Learning transferable architectures for scalable image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 8697–8710, 2018.

11


	1 Introduction
	2 Related Work
	3 Background
	3.1 Transformer Architecture
	3.2 Dropout

	4 DropAttention
	4.1 Dropping Contiguous Region
	4.2 Normalized Rescaling

	5 Experiment
	5.1 Text Classification
	5.2 Sequence Labeling
	5.3 Textual Entailment
	5.4 Machine Translation
	5.5 Complementarity to stardard Dropout

	6 Analysis
	6.1 Effect on Intra-Diversity
	6.2 Effect on Inter-Diversity
	6.3 Effect on Sparsity

	7 Conclusion and Discussion

