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ABSTRACT
Social media users create millions of microblog entries on various
topics each day. Retweet behaviour play a crucial role in spread-
ing topics on social media. Retweet prediction task has received
considerable attention in recent years. The majority of existing
retweet prediction methods are focus on modeling user preference
by utilizing various information, such as user profiles, user post
history, user following relationships, etc. Yet, the users exposures
towards real-time posting from their followees contribute signif-
icantly to making retweet predictions, considering that the users
may participate into the hot topics discussed by their followees
rather than be limited to their previous interests. To make efficient
use of hot topics, we propose a novel masked self-attentive model
to perform the retweet prediction task by perceiving the hot top-
ics discussed by the users’ followees. We incorporate the posting
histories of users with external memory and utilize a hierarchical
attention mechanism to construct the users’ interests. Hence, our
model can be jointly hot-topic aware and user interests aware to
make a final prediction. Experimental results on a dataset collected
from Twitter demonstrated that the proposed method can achieve
better performance than state-of-the-art methods.
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Mexico football fans may have caused an earthquake 

😂 😂

 as 
they celebrated their win against Germany in the #WorldCup

Hardik Brown  @Hardik Brown · 17 Jun 2018

broooo someone said "this is isn't the first time Germany has 
come to Russia unprepared" 

😭 😭 💀 💀 💀 💀

James Ian  @James Ian · 17 Jun 2018

Mexico       winning is the best fathers day gift to all mexican dads. 
#WorldCup #FathersDay

White Ryder  @White Ryder · 17 Jun 2018

 

$

White Ryder Retweeted

Mexico you're doing amazing sweetie!  #Mexico
Germany-Mexico: 0-1 

😎 😎 😎 😎

Musk Bosh  @Musk Bosh · 17 Jun 2018

Mexico you're doing amazing sweetie!  #Mexico
Germany-Mexico: 0-1 

😎 😎 😎 😎

Musk Bosh  @Musk Bosh · 17 Jun 2018

Topic : "Mexico beats Germany"

Figure 1: Example of the influence of a user’s social expo-
sures covering hot topics. When Mexico stunned defend-
ing champion Germany for a brilliant win at the 2018 FIFA
World Cup, Mexicans who knew nothing about football
would also joined in the celebration. Similarly, users would
join in the topics discussed in the users’ social exposures
from their followees, which are irrelevant to users’ interests.

1 INTRODUCTION
With the boom of social media platforms (e.g., Instagram, Facebook
and Twitter), it has become incredibley convenient for users to
focus on worldwide hot topics and share their personal insights and
opinions. Anyone who wants to express personal views on some
events or promote a product can post a tweet on a Twitter-like social
media site. Nevertheless, retweeting is themost straightforward and
crucial way to spread information or participate in topic discussions.
According to a recommendation from a multimedia journalism
professor, retweeting is a great way to express your thoughts and
good retweeting really does involve adding a few comments of
your own to the original post1. Hence, retweet prediction plays
a important role in various application scenarios, such as stock
prediction [4, 52], opinion mining [3, 26], public health analysis
[31, 43], real-time event detection [34], etc.

Currently, research on retweet prediction in social media takes
primarily two kinds of information. In the first part, some methods

1https://www.lifewire.com/retweet-with-a-comment-on-twitter-2655355
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construct the prediction models through the social network maps,
which may contain the probability of information dissemination.
[30] built an information propagation tree, while other researchers
have considered various social relationships [27, 32, 47]. Second,
some contextual features are incorporated to perform this task
[10, 37], such as content features, hashtags, and users’ profiles.
Recently, some other methods have attempted to construct users’
interests from their posting histories [2, 11, 49, 50]. With the vol-
ume of user-generated image tweets growing tremendously, the
multimodal content information is the latest to be introduced to
deal with retweet prediction. [53] proposed a multimodal model
to utilize image tweets to deal with this problem. In addition to
feature engineering-based machine learning models, [50] proposed
an attention-based deep neural network to calculate the similar-
ity between the content of the tweet and the user’s interests. The
attention-based convolutional neural network has achieved better
performances than other kinds of methods.

Although a variety of studies have been conducted on the task of
automatically predicting retweet behaviour in social networks, the
majority of these methods focus on modelling user preference by
utilizing various information, such as user profiles, user post history,
user’s following relationships, etc. Considering the convenience of
sharing real-time information on social media sites, it is obvious
the hot topics discussed in a user’s social exposures would affect
the user’s retweet behaviour, interpreted as participating into those
topics. Figure 1 shows an example of the influence of an unexpected
win at the 2018 FIFA World Cup. After Mexico beat the defending
champion Germany and became the dark horse, Mexicans who
knew nothing about football would also joined in the celebration.

To overcome the above difficulties in retweet prediction tasks, we
propose a novel masked self-attentive model to incorporate the hot
topics discussed by the users’ followees. Some previous works have
been successfully to utilized revised self-attentive mechanisms to
capture the key information among the contextual information. For
example, [54] utilized a masked transformer to help a video caption
model to focus on key events. [24] proposed a gated self-attentive
mechanism to utilize intent detection to improve slot filling task.
In this paper, a novel masked self-attentive model is applied to the
user social exporsure. After treating the recent posts of a user’s
followees as an interrelated module, we firstly utilized self-attention
to construct the context-aware representation. Further, we utilized
the context-aware representation to generate a mask, and each
channel of the mask represents the relevance of a common topic.
More specifically, a hierarchical attention mechanism is utilized to
model the users’ interests. In a word, our model take the content
of a tweet, history of its author, history interest of the candidate
retweet user, and the social exposures of the candidate retweet user
into consideration, simultaneously. Hence, our model would make
a better retweet prediction as considering both users’ interests and
the hot topic discussed among the users’ followees.

To demonstrate the effectiveness of our model, we performed
experiments on a large data set collected from Twitter. Experimen-
tal results showed that the proposed method could achieve better
performance than state-of-the-art methods ignoring potential hot
topics in the user’s social exposures. The main contributions of our
work can be summarized as follows.

• We introduced an integrated framework to not only consider
users’ interest similarity, but also the hot topics discussed in
users’ social exposures to perform retweet prediction task.

• We proposed a novel masked self-attentive network that can
perceive the hot topics discussed among the users exposures
towards real-time posting from their followees.

• Experimental results using a dataset constructed by us from
Twitter demonstrated that our model could achieve signifi-
cantly better performance than current state-of-the-art meth-
ods.

2 RELATEDWORK
2.1 Retweet Prediction and Social Media

Recommendation
With the continuous development of social media, there are dra-
maticly increasing requirements coming out. Vary tasks have been
proposed for different issues on social media, such as content rec-
ommendation [6, 21], community recommendation [51], tag rec-
ommendation [9, 12, 22], music recommendation [35], mention
recommendation [13, 16, 40], stock prediction [4, 52], opinion min-
ing [3, 26], public health analysis [31, 43], real-time event detection
[34] and so on.

There is a broad spectrum of retweet-related research includes
prediction of retweets, retweeters, retweet counts, information
spread flow of tweets as well as tweet recommendation. Some
works try to explore, analyze, and predict user’s retweet behaviour,
some are focus on finding out potential retweeters. These methods
can be categorized into three versions as follows: 1. Which tweet
will be retweeted by the user? 2. Who will retweet the target tweet?
3.Why do some tweets get more retweets?

For the first kind of research area, [7]incorporated some impor-
tant features such as user’s prior interaction with author, author’s
tweeting rate, content of tweet on user’s retweeting behavior. In the
second sub-category, the goal is to not only analyze which feature
may influence user’s retweeting behavior but also make retweet pre-
diction models based on their investigated information. Early works
such as [5, 37] studied a wide range of features that could affect the
retweetability of a tweet. [2, 10] used probabilistic models to predict
the retweeting probability based on the user retweet behavior and
user interest. [32] explored content influence, network influence,
and temporal decay factor on users’ retweeting decision and pro-
posed Conditional Random Field (CRF) based retweet prediction
model using features that define tweet’s content influence, user’s
network influence, and temporal influence on user’s retweet deci-
sion. [45] analyzed different features to develop retweet prediction
model from the perspective of individual users. [46] incorporated
the social influence and breaking news on user’s retweeting behav-
ior and incorporated these influences in their proposed mixture
latent topic retweet prediction model. [47, 48] studied the influence
of users’ social information on their retweeting behavior. Recent
works [41, 50] applied deep neural network (DNN) architectures
to this task to perform feature extraction, and realized significant
performance improvements. In the last sub-category, the goal is to
judge the influence of information flow by retweet behaviour. [18]
and [42] proposed matrix factorization retweet prediction models.



Table 1: Statistics of our dataset.

# Tweets 4,903,398
# Users 80,575

# Positive Data 18,937
# Negative Data 94,495

In this work, we mainly study the second sub-category as mak-
ing a prediction about whether the user will retweet the query
tweet. [50] was the state-of-the-art approach performing retweet
prediction task as the same way with us. We not only incorporate
the posting history of the users and the authors, but also take into
consideration of the hot topics discussed in user’s social exposures.

2.2 Attention mechanism and Memory
Network

Attention mechanisms allow models to focus on necessary parts
of inputs at each step of a task. And the idea is come from visual
attention mechanism found in humans. Human visual attention
suggests that our brain usually focuses on selective parts of the
whole perception regions according to demand. Futhermore, at-
tention mechanism has been proved to be significantly effective
in both visual related tasks and natural language processing tasks,
such as machine translation [1], question answering [36, 44], image
classification [29], etc. Particularly, the self-attention [39] based
model BERT [8] has achieved great success in many NLP tasks. Its
effectiveness results from the assumption that human recognition
does not tend to process whole texts or images in their entirety.
In other words, humans attempt to focus on the important parts
of the whole perception regions according to demand. Hence, the
attention mechanism is proposed to extract important information
from the inputs space, which can provide the model to focus more
on processing the important information and achieve a better per-
formance on tasks. And the self-attention mechanism is proposed
to address long-range dependencies challenge, and construct a bet-
ter context-aware representation. Therefore, we make a improved
version based on self-attention mechanism to construct the hot
topic aware information among the social exposure for users.

Recently, variants of Memory Networks have been proposed
to deal with various NLP tasks. Especially for question answering
task, [38] proposed a end-to-end memory network with a recurrent
attention model over a possibly large external memory, [23] pro-
posed a dynamic memory network to treat various NLP tasks as
question answering problem. [25] incorporate the reinforce learn-
ing to construct dynamic memory and utilize the dynamic memory
to deal with question answering task. In this work, we combine the
hierarchical attention with end-to-end memory network to model
the interest similarity between user and author.

3 PRELIMINARY
3.1 Dataset Construction
We constructed a large dataset to evaluate our proposed model.
We crawled a large amount of Twitter data published before June
5, 2017 from Twitter API 2. First, we randomly selected 1,500
2https://developer.twitter.com

users, who have published more than 1,000 tweets and have more
than 20 followees, as the starting users. Then we crawled all the
tweets posted by them and their followees. In this step, we crawled
totally 411,054 users and 36,807,681 tweets. Second, we removed
non-English Tweets, cleaned the remaining tweets by removing
URLs and special characters; then we removed the tweets less than
5 words. After these removal, we checked the users iteratively,
making sure that each user had at least 50 tweets, more than 20
followees, and retweet data.

We sorted the tweets of every user by time. Using the follow-fans
information, we then reverted the home timeline of each user. We
used the retweets by the user in the timeline as his/her positive
data; used 30 tweets immediately before the retweet as timeline
data; and randomly chose 30 tweets posted before the retweet by
the user and the author separately, as their posting history. For
each retweet, we randomly chose 5 tweets in the timeline that not
reweeted by the user as his/her negative data, and constructed the
timeline and posting histories as before. In total, we got 18,937
positive data and 94,495 negative data. The detailed statistics of
the dataset are listed in Table 1.

3.2 Data Analysis
Generally speaking, social media users usually participate in the dis-
cussion of tweets related to their interests. Particularly, [17] proved
that social media user’ interest is concentrated in a limited range
and tends to remain stability over a period of time. Furthermore,
the topics that a user wants to join will be similar to the tweets
he or she has posted. However, human beings are essentially tend
to join in social groups and full of exploring spirit. There is no
wonder that both Twitter and Facebook provide trending lists (e.g.,
“in case you missed it” in Twitter and “top stories” in Facebook) to
help users quickly find popular topics and improve the diversity of
recommended content.
Hypothesis : User will also take retweet behaviour and participate
in the hot topics discussed by his or her followees, which is unrelated
to user’s history interest.

To verify the hypothesis, we analyze the difference among user
posting history, user retweet history and real-time posting of cor-
responding user’s followees. In order to figure out interests among
these tweet sets, we utilize Latent Dirichlet Allocation with col-
lapsed Gibbs sampling [14]. With the help of LDA, each document
(here, tweet collection) may be viewed as a mixture of various
words that attempt to co-occur in similar documents. Each set of
co-occur words is named as “topics” in LDA. In this experiment,
we utilize these topics to represent user’s posting interest, user’s
retweet interest and social interest of user’s social exposures.

Specifically, for each user, we randomly selected 100 posted
tweets as the user’s posting documents, 100 tweets from retweeted
tweets as the the user’s retweet documents and sampled 100 tweets
from the the real-time post from user’s followees as the user’s social
exposure documents (both retweet or not retweet may contain
in the user’s social exposure documents). We set the number of
LDA topics to 50 and utilized Kullback-Leibler (KL) divergence to
measure the differences between these three distributions. Based
on statistics, we found that tweet the user will retweet have similar
interests with the user’s posts. Because the KL-divergence between



Figure 2: An example of LDA topic distributions of among
user postings, user retweets and user’s social exposures. The
number of LDA topics is set to 50, and the probabilities of top
10 topics are shown in the figure. Topics that a user wants to
join have a distribution similar to the tweet sets he or she
posted, whereas there still remain some retweets are unre-
lated to the user’s posting history. Accordingly, taking the
social exposures of users into consideration is a great choice
to fix such issue.

these two distributions is below than threshold for more than 89%
of users. However, there are also some topics that are irrelevant
to user’s post history. Just like the example shown in Figure 2, the
probabilities of top 10 topics are shown in the figure. Topics that a
user wants to join have a similar distribution to the tweet sets he
or she posted, whereas there still remain some top topics are out of
the rule. In the other words, taking the social exposures of users
into consideration is a great choice to meet the challenge. Certainly,
according to our statistics, we discovered that more than 43% of
users meet the following conditions on at least one top topic,

1). 0.8 ≤ Pr etweet (topic = i)/Psocial (topic = i) ≤ 1.25,
2). Pr etweet (topic = i)/Ppost (topic = i) ≥ 50,
where Pr etweet (topic = i) denotes the retweet probability at

topic i , and the same to Psocial (topic = i), Ppost (topic = i).
From the above analysis, we can conclude that user retweet be-

haviours are sometimes influenced by the topics discussed among
his or her followees. Thus, compared with only construct interest
similarity between query tweet and users’ posting history, it is
feasible to incorporate users’ social exposures as a crucial comple-
mentary part to perform retweet prediction.

4 APPROACH
Problem Definition and Notation

First of all, we describe some preliminary of our approach, such
as the problem definition and corresponding notation. In this work,
given a query tweet tq and a user u, our task is to predict whether
the user u would retweet the tweet tq based on three parts of infor-
mation. And the details of these external information are described
as follows: 1. the posting history of the author of the query tweet
Ha = {ta1 , ta2 , · · · , taN }, which can represent author’s interests,
2. the posting history of the user Hu = {tu1 , tu2 , · · · , tuN }, which
can represent user’s interests, 3. the real-time tweets posted by
followees of the user Hl = {tl1 , tl2 , · · · , tlN }, which may contain

hot topics unfamiliar with user’ interests and author’s interests.
(And N denotes the amount of tweets for each collection. )

The social exposures of each user can be viewed as an informa-
tion flow within a small community, and may contain common
topics due to potential common interests among the small com-
munity. Furthermore, one user’s social exposures are composed
of the real-time posting from different followees, and the infor-
mation flow does not have time sequence consistency. Hence, the
self-attention mechanism with a maximum length of 1 is a better
choice to construct the context aware representation than Recurrent
Neural Network. (The shorter these paths between any combina-
tion of positions in the input and output sequences, the easier it
is to learn long-range dependencies [15, 39].) Particularly, in or-
der to filter out hot topic among the user’s social exposures, we
incorporate two parallel Transformer encoder and the final layer
of first Transformer encoder is utilized to generate a mask vector,
where the value in each dimension of the mask vector represents
the similarity for corresponding tweet. By taking element-wise
multiplication of mask vector and each stack layer of the second
Transformer encoder, unrelated information will be filtered after
multiplying a small value many times. To model the history interest
similarity between user and author, the query tweet tq is incorpo-
rated to make a hierarchical mechanism over the author posting
history Ha and user posting history Hu . Based on the query tweet
tq , author posting history Ha , user posting history Hu , and user’s
social exposures Hl , the output layer can represent the probability
of retweeting behaviour. The overall architecture of the model is
illustrated in Figure 3, and the masked self-attentive mechanism is
the right part in Figure 3.

In this section, we will introduce the basic framework of our
approach in detail. Firstly, we utilize bi-directional long short-term
memory networks (Bi-LSTM) to encode each tweet. To meet the
need of different levels of semantic representation, we maintain all
word-level hidden vectors for each tweet in author posting history
Ha and user posting historyHu , but utilize the last hidden vector for
query tweet tq and each tweet in user’s social exposures Hl . After
performing multi-hop hierarchical attention over author posting
history Ha and user posting history Hu , we can formulate the his-
tory interest similarity vector OH . Meanwhile, the hot-topic aware
social exposure vector Ol is constructed by our proposed masked
self-attentive mechanism. Then a concatenation layer is applied
to combine the history interest similarity OH and hot-topic aware
social exposures Ol . Finally, the retweet behaviour is predicted by
a fully connected softmax layer. We describe our models in four
parts. The tweet feature representation is described in Section 4.1.
The masked self-attentive mechanism and hierarchical attention
mechanism are described in Section 4.2 and Section 4.3, respectively.
The last Section 4.4 is the description of final prediction.

4.1 Tweet Feature Representation
At the beginning, we convert each wordwordi in a given tweet t
to a one-hot vector in the size of the vocabulary. Then, we utilize a
simple embedding layer to encode each one-hot vector to a word
vector wi distributed in a continuous space: wi = Mwordi (here,
we utilize pre-trained Twitter glove embedding [33]). The size of
the embedding layer is d× |V |, where d is the embedding dimension
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Figure 3: Overall architecture of our proposed AUT-MSAM: (1) Modeling of History Interests Similarity between Author and
User, (2) Modeling of Hot-topic Aware User’s Social Exposures. Here, we denote uq as the representation of query tweet. For
the first componet, we utilize uq as the initial representation for oh to query author posting history Ha and user posting
history Hu . And the hierarchical attention constructing procesure will stack H times to formulate the final represenation oH ,
which represents history interests similarity between user and author. For the second component, uq is incorporated into the
masked self-attentive mechanism, and final representation ol of social exposure can aware whether the query tweet meets the
hot-topic in social exposure. These two components are joint to make a final prediction.

and |V | is the size of the vocabulary. Hence, we get a word-level
tweet feature representation: t = {w1,w2, · · · ,wT }, where T is
the maximum tweet length. More specifically, each sentence with
length less than T is padded with zero vectors.

In view of that tweets are limited to 140 characters in length and
tend to be short in content. Hence, we utilize the bidirectional LSTM
to construct a sentence-level tweet features representation. At each
time step, the bidirectional LSTM unit takes the word embedding
vector wt as an input vector and outputs a hidden state ht . The
details are illustrated as follows:

ht
(f ) = LSTM(f )(wt ,ht−1

(f )), (1)

ht
(b) = LSTM(b)(wt ,ht+1

(b)), (2)
where ht (f ) and ht

(b) represent the hidden states at time step t
from the forward and backward LSTMs, respectively. Finally, we
construct a set of text feature vectors uT = {u1,u2, · · · ,uT } by
concatenating the two hidden state vectors at each time step:

ut = [ht
(f ) : ht (b)], (3)

whereut is the representation vector of the t-th word in the context
of the entire sentence. Specifically, the word embedding matrix and
the bidirectional LSTMs are trained end-to-end over the whole
model.

Considering the following two attention mechanism focus on
different semantic level representation, we will maintain all hid-
den vectors and the last hidden vector from bi-lstm respectively.
The last hidden vector is utilized to construct the sentence-level

representation for the query tweet tq and all tweets in the user’s
social exposures Hl . And all hidden vectors will be stored in the
corresponding user history memory. More details will be described
in the next two sections.

4.2 Hierarchical Attention Memory Network
Intuitively, a user’s history interest will be reflected in his post his-
tory. Furthermore, the similarity between user’s history interest and
author’s interest can influence the retweet behaviour when given a
query tweet. Hence, we propose a hierarchical attention memory
network to model the interest similarity between the author and the
user. As shown in the left part of Figure 3, both user posting history
set Hu and author posting history set stored in the memory have
a hierarchical structure. Take Hu as an example, there are many
tweets in user posting history set: Hu = {tu1 , tu2 , · · · , tuN } and
these are tweet-level information stored in the user history memory.
Next, there are many words in each tweet: tui = w1,w2, · · · ,wT
and these are word-level information stored in the user history
memory. There is no wonder that not all tweets in the history mem-
ory contribute equally to modelling user’s interest, nor do all words
in each tweet. Hence, we propose a hierarchical architecture to
model the interest similarity between the user and the author.

Specifically, in order to construct a high-level representation
of the similarity between author’s interest and user’s interest, we
stack H layer of hierarchical attention on user’s history memory
and author’s history memory. We denote the above query tweet



feature representation uq as the initial query vector O0 for H layer
stacked hierarchical attention. Then, we utilize Oh to formulate
textual attention probabilities over the author’s tweet histories and
the user’s tweet histories, and construct the next query vectorOh+1.
And the final interest similarity vector OH is constructed after H
layer hierarchical attention.
Word-level encoder

Give an tweet history set t1, t2, ..., tN , first, each word wordi, j
of ti is embedded into a vectorwi, j (dimension ofwi, j is d) using
an embedding matrix A (size of A is d × |V |). Then, after a bi-lstm
layer, each word hidden vector ui, j will be stored into the corre-
sponding history memory. Leveraging the advantage of filtering
irrelevant words, at the h-th hierarchical-attention layer, we use the
last step of the query vector Oh−1 to generate attention probabili-
ties over the word-level part of user’s history memory. The detail
of match between input memory vector ui, j andOh−1 is illustrated
as follows:

zhi,T = (W h
OO

h−1)trW h
T ui,T , (4)

ahi,T = so f tmax(zhi,T /
√
dk ), (5)

ũhi =
T∑
j=0

ahi, jui, j , (6)

where T is the max length of each tweet, ui,T ∈ Rd×T is the repre-
sentation matrix of tweet i , “tr” denotes matrix transpose operation,
and

√
dk denotes the scaling factor asW h

O ∈ Rdk×d ,dk < d .
Tweet-level encoder

Following the above procedure, we formulate a new representa-
tion ũhi for each history tweet ti based on a word-level attention
mechanism. Similarly, not all tweets are equally relevant to con-
structing a user’s interests. Hence, in order to model the whole
interest of a user, we also utilize the last step of the query vector
Oh−1 to query the new representations of each history tweet ũhi .
Modelling the representation of a user’s tweet histories based on
the tweet-level attention probability distributions:

zhN = (W h
ONO

h−1)trW h
N ũN , (7)

ahN = so f tmax(zhN /
√
dk ), (8)

ũh∗ =
N∑
i=0

ahi ũi , (9)

where N is the amount of tweets stored in user history memory,
ũN ∈ Rd×N is the representation matrix formulated by the new
representation vector of each tweet i , the label “∗” can represent
the author or the user in the tweet history interest representation.

Further, the h-th global representation vector is used to denote
the interest similarity between the author and the user according to
a query tweet. In each hop h, the global representation is updated
by combining the high-level representation constructed from both
user’s posting history and author’s posting history: Oh = ũhu +

Oh−1 + ũha . The hops operator allows the model to recurrently
accumulate information from the supporting memory, ultimately
producing a final joint representation for modelling the interest
similarity between user and author.

4.3 Masked Self-Attentive Mechanism
Obviously, the real-time posting from a user’s followees can cover
various topics. Moreover, the followees of a user can be viewed as
local community, and hot topics discussed in the community may
attract user to participate in these topics by retweeting or replying.
Therefore, the challenge is how to model the hot topics contained
in the recent posting from the user’s followees. Considering the
non-sequential continuity of the recent posting from the user’s
followees, it is not appropriate to construct the context information
with Recurrent Neural Network-like sequential models. Hence, the
self-attention mechanism with a maximum length of 1 is a better
choice to construct the context aware representation among the
recent posting from the user’s followees Hl .
Preliminary

Firstly, we introduce some background on Transformer [39],
which contains the building block for our masked self-attentive
mechanism. And we introduce the scaled dot-product attention,
which is the foundation of Transformer. Given a query qi ∈ Rd

from all queries, a set of keys kt ∈ Rd and values vt ∈ Rd where
t = 1, 2, · · · ,T , the scaled dot-product attention outputs a weighted
sum of values vt , where the attention probabilities are determined
by the dot-products of query q and keys kt . And the formulation
of attention output on query q is as follows:

Att(Q,K ,V ) = so f tmax(
KTQ
√
d

)V , (10)

Themulti-head attention consists ofH paralleled scaled dot-product
attention layers called “head”, where each “head” is an independent
dot-product attention. And themulti-head attention allows the model
to jointly attend to information from different representation sub-
spaces at different positions. The attention output from multi-head
attention is as below:

MultiHead(Q,K ,V ) = Concat(head1,head2, · · · ,headH )WO ,

(11)

headi = Att(QW
Q
i ,KW

K
i ,VW

V
i ) (12)

whereWQ
i ,W

K
i ,W

V
i ∈ Rd×dk are the independent head projection

matrices, i = 1, 2, · · · ,H andWO ∈ Rhdk×d .
As shown in the right part of Figure 3, we utilize two paral-

lel stacked encoders to construct the topic-aware representation
among the social exposures of a user (also named the recent post
from a user’s followees). And the masked self-attention module
consists of three components: 1) General Stacked Encoder, 2) Mask
Generator, and 3) Masked Encoder Stack. As mentioned above,
self-attention mechanism with a maximum length of 1 is a better
choice to construct the context aware representation among the
recent posting from the user’s followees Hl . Hence, the primary
task of both two parallel stacked encoder is focus on formulating
the context-aware representation. However, the difference is that
the masked encoder multiplies the input of each encoder layer by a
mask matrix to perceive the hot topics. Moreover, the mask matrix
is formulated by the outputs of the general stacked encoder and
query tweet.
General encoder



Specifically, our general encoder is composed of a stack of N = 6
identical layers. And each layer is composed of the above multi-
head self-attention layer and fully connected feed-forward network.
Like [39], we also incorporate residual connection and layer nor-
malization around each of two sub-layers. The fully connected
feed-forward network consists of two linear transformations with
a ReLU activation in between.

FFN (x) = ReLU (xW1 + b1)W2 + b2 (13)

WhereW1 ∈ Rd×dF ,W2 ∈ RdF×d , d < dF , and the fully connected
feed-forward network can be viewed as two convolutions with
kernel size 1. In other words, the FFN can increase the nonlinear
characteristics while keeping the feature map scale unchanged.

And i-th layer of general encoder is formulate as follows:

ũilN
= MultiHead(ui−1lN

,ui−1lN
,ui−1lN

), (14)

uilN
= FFN (ũilN

), (15)

where uilN represents the i-th layer output of the identical encoder,
and u0lN is initiated by the social exposure representation matrix
ulN . Moreover, the difference is additional mask matrix which helps
to perceive the hot topics among the recent posts from a user’s
followees: {

ui−1lN
= ui−1lN

, i f Mask = None

ui−1lN
= Maskui−1lN

, Else
(16)

Based on the context-aware representation of social exposure
tweets, the mask generator module incorporates the query tweet
uq to formulate the relevant probability for each social exposure
tweet uli :

Mask = σ (
(uqW1)TulN

√
d

) (17)

where σ denotes the sigmoid activation function, which limits the
value of each channel from zero to one. And ulN is the last layer
output of the general encoder stack.

After above procedure, we utilize the query tweet uq to query
the output of masked encoder, generating the hot-topic aware rep-
resentation Ol based on attention probability distributions:

zN = (WNuq )
trWNulN , (18)

aN = so f tmax(zN /
√
dk ), (19)

Ol =

N∑
i=0

aiulN , (20)

4.4 Prediction
Finally, we concatenate the representation of history interest simi-
larity OH and hot-topic aware social exposures Ol obtained from
the above process, and we denote the final representation as O f .
Then, we utilize multi-layer perceptron followed by a single-layer
softmax classifier to determine whether or not the user would
retweet the query tweet:

f = σ (MLP(O f )), (21)

whereMLP are the multi-layer perceptron, and σ is the non-linear
activation function sigmoid.

The final prediction is made by the following equations:

p(y = i | f ;θs ) =
exp(θ is f )∑
j exp(θ

j
s f )
, (22)

where θ is is a weight vector of the i-th class and j ∈ {0, 1}.
In our work, the training objective function is formulated as

follows:
J =

∑
(tq,a,u,l,i)∈D

−loдp(i |tq ,a,u, l ;θ ), (23)

where D is the training set. i ∈ {0, 1} is the label of the quadruples
(tq ,a,u, l), and when i = 1, the user u would retweet the query
tweet tq , and i = 0 represents the user u would not take retweet
behaviour. θ is the whole parameter set of our model.

To minimize the objective function, we use a stochastic gradient
descent (SGD) with the Adam [20] update rule. And the detail of
hyper-parameter will be illustrated in following section.

5 EXPERIMENT
5.1 Baseline and Setup
To analyze the effectiveness of our model, we evaluate some tradi-
tional and state-of-the-art methods as baselines as follows on the
constructed corpus:

• NB: We applied NB to model the posterior probability of
each query tweet given the posting history of the users and
the authors and the recent tweets posted by the followees
of the users. Additionally, we utilize GloVe’s Twitter vectors
[33] to represent each word and average all the words vectors
as the feature of a tweet.

• SVM: We implemented the method proposed in [28], which
used an SVM to solve retweet prediction problem. Similar to
the Naive Bayes, we consider the same information and the
same embedding matrix to make a prediction.

• AUT-CNN: As we defined the retweet prediction task as a
binary classification problem, we used the public code of the
method proposed in [19]. In this model, we utilize multiple
window sizes (3,4,5) to model the quadruple (query tweet
tq , author posting history Ha , user posting history Hu and
user’s social exposures Hl ).

• LSTM-ATT: First, we utilize the LSTM to generate the rep-
resentation of each tweet. Then, we incorporate attention
mechanism to process the three parts of information to make
a prediction.

• DMN: Dynamic Memory Networks (DMN) is proposed in
[23] for natural language processing. We utilize the dynamic
memory mechanism from DMN to model the interests of the
authors and the users, and address the retweet prediction
problem.

• SUA-ACNN: SUA-ACNN is proposed in [50]. It incorporates
only the posting history of the users and the authors. This
was the state-of-the-art approach used for the retweet pre-
diction task.

In this work, the model was implemented in the Pytorch frame-
work, At the training stage, we utilized Bi-GRU to construct the
tweet representation. The cell dimension d was set to be 100, and
the stack layer of the GRU was 3. The embedding dimension in the



Table 2: Comparison results on three versions of testing dataset. We divided the testing dataset into three categories based on
the capacity of each collection (the posting history of the author Ha = {ta1 , ta2 , · · · , taN }, the posting history of the user Hu =

{tu1 , tu2 , · · · , tuN } and the social exposure tweets posted Hl = {tl1 , tl2 , · · · , tlN }). Category “N = 10” denotes that we randomly
sample 10 tweets from users’ history to form Ha and Hu , respectively. And we also select 10 tweets immediately before the
retweet as social exposure collection Hl . Both Category “N = 20” and Category “N = 30” are in the same way.

DatasetN=10 DatasetN=20 DatasetN=30

Target Rate Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

NB 0.128 0.462 0.200 0.155 0.496 0.236 0.179 0.531 0.268
SVM [28] 0.207 0.526 0.297 0.253 0.563 0.349 0.288 0.608 0.391

AUT-CNN [19] 0.658 0.587 0.620 0.704 0.638 0.669 0.757 0.632 0.689
LSTM-ATT 0.769 0.647 0.703 0.788 0.686 0.733 0.825 0.672 0.741
DMN [23] 0.785 0.684 0.731 0.773 0.717 0.744 0.812 0.701 0.752

SUA-ACNN [50] 0.787 0.691 0.736 0.772 0.712 0.741 0.799 0.705 0.749
AUT-MSAM 0.772 0.693 0.731 0.789 0.759 0.773 0.842 0.732 0.783

experiment was 100 and the embedding layer was initialized by
GloVe’s Twitter vectors [33]. The number of hops for the hierarchi-
cal memory layer was set to 3. For the masked self-attentive module
(MSAM), both two encoders were composed of a stack of L = 6
identical layers. Specifically, we set the dimension of multi-head
attention to 64 and utilized 8 head to compose the multi-heads. To
increase the nonlinear characteristics while keeping the feature
map scale unchanged, we set the dimension of inner-layer to 2048.
And the learning rate was 0.001, mini-batches was 150, and the
dropout rate was set to 0.2. Further, we used precision (P), recall
(R), and F1-score (F1) to evaluate performance.

5.2 Results and Discussion
The performance of different methods on our datasets is listed in
Table 2. There are three blocks, and the difference between blocks
rely on the capacity of each collection (the posting history of the
author Ha = {ta1 , ta2 , · · · , taN }, the posting history of the user
Hu = {tu1 , tu2 , · · · , tuN } and the social exposures tweets posted
Hl = {tl1 , tl2 , · · · , tlN }). Category “N = 10” denotes that we ran-
domly sample 10 tweets from users’ history to form Ha and Hu ,
respectively. And we also select 10 tweets immediately before the
retweet as social exposure collection Hl . Both Category “N = 20”
and Category “N = 30” are in the same way. When we have enough
information, we can observe that our proposed model AUT-MSAM
achieves a better performance than other methods of all metrics.

By compared with SUA-ACNN, which was the state-of-the-art
method for the retweet prediction task, the proposed model (AUT-
MSAM) achieves a relative improvement of 5.4% in precision, along
with a 3.8% increase in recall and 4.5% increase in F-score when
the “N = 30”. Moreover, our model (AUT-MSAM) also achieves
a relative improvement of 2.2% in precision, along with a 6.6%
increase in recall and 4.1% increase in F-score when the “N = 20”.
Particularly, when the capacity of each tweet collection is set to
10, we can find that our proposed model only achieve a little better
performance in recall. As SUA-ACNN was proposed to construct
user interest by utilizing only 5 history posting tweets, hence, it can
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Figure 4: Performance on different hop of hierarchical atten-
tion memory network

achieve a little better performance with limited information. But,
the results can also prove our can address long-range dependencies
challenge, and construct a better hot topic aware representation.

In order to prove the effectiveness of incorporating users’ tweet
posting histories and the recent posting from users’ followees, we
also apply Dynamic Memory Network (DMN) [23] on our dataset.
Moreover, this method is proposed for question answering task
and can learn to dynamically construct external memory. From the
results table, we can observe that our proposedmodel ( AUT-MSAM)
achieves a better performance than DMN in all evaluation results.
Compared with the DMN, our model achieves more than 3.6%
relative improvements in precision, 4.4% relative improvements
in recall and 4.1% relative improvements in F-score. Hence, by
incorporating users’ tweet posting histories and the recent posting
from users’ followees, our proposed model performs well on the
retweet prediction task.
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Figure 5: Influence of Embedding size

5.3 Parameter Influence
The proposed model contains several critical hyper-parameters. We
analyzed the influence of critical parameters from the following
perspectives: 1) the hops of hierarchical attention memory network,
and 2) the embedding dimension. We vary one parameter and fix
the others in turn to evaluate their influences. Based on the ex-
perimental results, we can observe that the proposed model could
achieve stable performance, in the condition of various parameter
settings.

The first parameter we evaluated is the hops of hierarchical
attention memory network, which we varied from 1 to 5 in this
experiment. In Figure 4, we draw the Precision, Recall and F-score
curves to show the the influence of the hops. Along with the in-
crease hops of the hierarchical attention memory layer, the results
are better. We also obtained the best performance with the 4-layer
hierarchical attention, which indicates the robustness of our model
along with the depth deeper. Since increasing the number of layers
of the network will make the model more complex with more pa-
rameters, and the model attempt to be overfitting. Hence, 4 hops of
hierarchical attention memory layer is a better choice.

To evaluate how embedding dimension influence the perfor-
mance, we fix the hops of the hierarchical attention memory layer
to 4 and tried different embedding dimensions. Since the pre-trained
Glove Twitter Embedding [33] only provides four kind of dimen-
sions, we have tried 25, 50, 100, 200 respectively. The comparison re-
sults shown in Figure 5 demonstrate that the models with a medium
embedding dimension performed better. The results improvedwhen
the dimension was increased from 25 to 100, and the result of the
200 embedding dimension was worse than the 100 dimension. This
shows that the word representation in 100 dimension is enough to
represent the semantic space in the dataset.

5.4 Ablation Study
We further analyze the major components that contribute a lot
to the performance. The results are illustrated in Table 3. As men-
tioned before in ProblemDefinition, with the consideration of users’
interest and potential hot topic information, AUT-MSAM is verified
to make a considerate prediction of query tweet. As shown in Table
3, the performance of AUT-MSAM significantly decreased when

removing any of them. Definitely, the user history is critical for
making great prediction. However, the mask mechanism is shown
to contributing more than 50% performance improvements, which
is achieved after incorporating social exposures. Specifically, we
simply utilize general encoder stack in AUT-MSAM (w/o Mask).

Table 3: Ablation of our proposed model AUT-MSAM.

Method Precision Recall F1

AUT-MSAM (w/o Mask) 0.828 0.725 0.773
AUT-MSAM (w/o Social Exposures) 0.811 0.722 0.764
AUT-MSAM (w/o Author History) 0.808 0.719 0.761
AUT-MSAM (w/o User History) 0.801 0.676 0.733
AUT-MSAM(ours) 0.842 0.732 0.783

6 CONCLUSION
With the rapid development of social media and the great rich-
ness of topic diversity, in this paper we introduce a integrated
framework to incorporate the hot topics discussed in users’ social
exposures and users’ posting history to perform retweet prediction
task. Considering that the real-time posts from users’ followees con-
tain various topics, and these tweets come from different users, it is
out of sequential continuity. Hence, we propose a novel masked self-
attention to construct the hot topic aware representation among
the recent tweets posted by a user’s followees. Since user’s posting
history tweets are not equally important in modelling user’s in-
terest, we utilize a hierarchical attention memory network, which
generates word-level attention and tweet-level attention sequen-
tially. Therefore, our model can not only sense whether the query
text matches the user’s interest, but also the social influence of
hot topics, which is a very important supplementary information
for retweet prediction. We also constructed a large data collection
retrieved from Twitter to evaluate the effectiveness of our model.
Experimental results showed that the proposed method achieves
better performance than state-of-the-art methods ignoring hot top-
ics.
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