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Abstract

Undersampling has been widely used in the class-imbalance
learning area. The main deficiency of most existing un-
dersampling methods is that their data sampling strategies
are heuristic-based and independent of the used classifier
and evaluation metric. Thus, they may discard informative
instances for the classifier during the data sampling. In
this work, we propose a meta-learning method built on the
undersampling to address this issue. The key idea of this
method is to parametrize the data sampler and train it to
optimize the classification performance over the evaluation
metric. We solve the non-differentiable optimization problem
for training the data sampler via reinforcement learning. By
incorporating evaluation metric optimization into the data
sampling process, the proposed method can learn which
instance should be discarded for the given classifier and
evaluation metric. In addition, as a data level operation,
this method can be easily applied to arbitrary evaluation
metric and classifier, including non-parametric ones (e.g.,
C4.5 and KNN). Experimental results on both synthetic
and realistic datasets demonstrate the effectiveness of the
proposed method.

Introduction
In many application areas of data mining and machine
learning, the problem of class-imbalance is ubiquitous and
tasks in these areas are commonly to distinguish the minority
classes or achieve a balanced classification performance
(Van Hulse, Khoshgoftaar, and Napolitano 2007). In this
situation, conventional accuracy-based measurements are
usually misleading because they are highly dependent on the
classification accuracy of the majority classes. Therefore,
many more appropriate and domain interest measurements
such as the F-measures, area under the curve (AUC)
(Hanley and McNeil 1982), and geometric mean (GM), were
developed. In general, it is assumed that a classifier works
well for the class-imbalanced task if it can achieve a good
performance over the given evaluation metric. However,
most of the existing learning algorithms were designed to
improve the accuracy (Ganganwar 2012), instead of the
given evaluation metric, by minimizing the training loss.
Thus there is actually a gap between the training object of
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the supervised classifier and the task object revealed by the
evaluation metric.

Undersampling has been widely used to narrow this
gap in the class-imbalance learning area. The prevailing
undersampling strategies undersample instances of majority
classes using different heuristics (Cieslak and Chawla 2008;
Wilson 1972; Mani and Zhang 2003; Tomek 1976b; 1976a),
with the hope of arriving at a more robust and fair
decision boundary for the evaluation metric. The sampling
probability of each example is usually decided by the global
or local imbalance ratio (Cieslak and Chawla 2008) and
the hyper-parameters, which are adjusted to obtain better
performance over the evaluation metric. However, these
undersampling strategies are usually heuristic-based. They
do not take into account the form of the used classifier
and evaluation metric. Thus, even using fine-tuned hyper-
parameters, these strategies do not guarantee to obtain an
appropriate subset matching the task object (Batista, Prati,
and Monard 2004; He and Garcia 2009). A typical problem
of these strategies is that they may throw away potentially
useful data (Liu, Wu, and Zhou 2009).

In this work, we propose a meta-learning method built
on the undersampling to address the above issues. We
parametrize the data sampler and train it to optimize
the classification performance over the evaluation metric.
Therefore, different from previous undersampling strategies
that sample instances heuristically, the parametrized data
sampler is trained to distinguish which instances should
be discard and which instances should be preserved. We
approach the non-differentiable optimization problem for
training the data sampler via reinforcement learning. Specif-
ically, we formulate the data sampling procedure as a
Markov decision process (MDP), which takes the sampling
operation of each example as the action, the chosen subset
as the state, and the performance of the classifier trained
using the chosen subset over the evaluation metric as the
reward. We show that the convergence of this algorithm is
guaranteed by that of the policy search algorithm (Williams
1992). For evaluating the proposed method, we performed
experiments on both synthetic and realistic imbalanced
datasets. The experimental results show that the proposed
method can consistently outperform different heuristic-
based data sampling methods, including undersampling
and oversampling, and it can also achieve comparable
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performance with the specifically designed state-of-the-art
cost-sensitive learning methods.

The contributions of this work can be summarized
as follows: 1) We propose a meta-learning method to
incorporate the evaluation metric optimization into the
undersamling process. It can be easily applied to arbitrary
classifier and evaluation metric, and makes the data sampler
trainable. 2) We approach the non-differentiable optimiza-
tion problem for training the data sampler via reinforcement
learning and propose a practical implementation of this
approach. 3) The proposed model consistently outperforms
different heuristic-based data sampling methods including
undersampling and oversampling, and achieve compara-
ble results with the specifically designed class-imbalance
learning methods, which usually achieve state-of-the-art
performance.

Related Work
The extensive development of undersampling in recent
dacades has resulted in various strategies. A representative
is the random majority undersampling (RUS). In RUS,
instances of majority classes are randomly discarded from
the dataset. Some other strategies have attempted to improve
upon RUS by utilizing the distribution of data (Wilson
1972). For example, Near Miss (Mani and Zhang 2003)
selected the examples that were the nearest to minority
instances, and Cluster Centroid (Lemaı̂tre, Nogueira, and
Aridas 2017) undersampled the majority class by replacing
a cluster of majority samples with the cluster centroid of
the KMeans algorithm. However, these strategies are all
heuristic-based and commonly suffer from the problem that
discarding potentially useful data.

Some undersampling methods have used the ensem-
ble technique to overcome this problem (Błaszczyński
and Stefanowski 2015; Kang and Cho 2006; Liu, Wu,
and Zhou 2009). Two representatives of these methods
are EasyEnsemble and BalanceCascade (Liu, Wu, and
Zhou 2009). In short, EasyEnsemble independently samples
with replacement several subsets from majority instances
and builds a classifier for each subset. All the generated
classifiers form a single ensemble for the final decision.
BalanceCascade is similar to EasyEnsemble in structure.
The main difference is that BalanceCascade iteratively
removes the majority examples that were wrongly classified
by the classifiers.

Evaluation metric optimization has been gaining in popu-
larity in recent years (Parambath, Usunier, and Grandvalet
2014; Eban et al. 2017; Norouzi et al. 2016), but few
researcher have tackled the imbalanced data classification
problem. A popular solution is to approximate the discrete
evaluation metric with continuous loss (Eban et al. 2017;
Herschtal and Raskutti 2004), on which gradient-based
updating methods can be used. The problem is that it is
usually hard for many evaluation metrics to find appropriate
approximations. In addition, this solution is not applicable
to non-parametric classifiers such as the decision tree
(DT), k-nearest neighbor (KNN), and other rule-based
models. Another popular solution borrows ideas from the
reinforcement learning literature. It samples from the model

during training and directly optimizes the reward over
the model parameters with policy gradient ascent methods
(Norouzi et al. 2016; Ranzato et al. 2015). In theory, this
class of methods can be applied to any evaluation metric.
However, it also suffers from the problem of not being
applicable to non-parametric models. The last but not the
least solution, Evolutionary Undersampling (EUS) (Garcı́a
and Herrera 2009), applies the evolutionary algorithm to
achieve this purpose. In EUS, each chromosome is a binary
vector representing the presence or absence of instances in
the data-set. Its time complexity isO(TNC), where T is the
iterated generations, N is the population size, and C is the
complexity for evaluating a sample (including training and
testing a classifier). The drawback of this algorithm is that,
it can only incorporate with quite simple classifiers (such as
1NN), otherwise its time-complexity will be quite high.

Method
The proposed method is to train the data sampler to sample a
subset of the training dataset and the goal in data selection is
to make the classifier achieve the optimum performance over
the evaluation metric. It is NP-hard to compute the optimum
solution, thus we must resort to an approximation. In the
following, we first precisely formulate this problem, and
then show how to approximate it via reinforcement learning.

Formulation
Let =(A) denote the subset of A. Then, our approach
contains a training dataset {X,Y}, a data sampler w:
{X,Y} → =({X,Y}), a supervised classifier f : x →
ŷ that is to train on =({X,Y}), and a specially defined
evaluation metric G : {Y, Ŷ} → R.

The problem can then be specified as finding the best
possible w that we are able. Ideally, we would take w∗
defined by

w∗({X,Y}) := arg max
=({X,Y})

G ({Y,f(X;=({X,Y}))}) ,

(1)
where f(X;=({X,Y})) denotes the predicted labels Ŷ of
X by the classifier f trained on =({X,Y}). But in general
we do not expect this to be achievable. Instead, we aim for a
good approximation of w∗ with

w({X,Y}) ≈ arg max
=({X,Y})

G ({Y, f(X;=({X,Y}))}) ,

(2)
rather than the best one.

Characterize as a Markov Decision Process
We approach the task of approximating (1) via reinforce-
ment learning. Specifically, we characterise the problem as
a Markov decision process (MDP), as defined by the tuple
(S,A,R, T , I), where
• S is the state space.
• A maps a state s ∈ S to a set of possible actions A(s)

when in s.
• R maps a state s ∈ S and an action a ∈ A to the reward
R(s, a) ∈ R.
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• T characterises the transitions made by MDP T : S×A →
S.

• I is the distribution of the initial state s0 ∈ S.
A policy π(a|s;θ) = p(a|s;θ) defines the probability of

performing action a given that we are in state s. Here we
write θ inside the probability to denote that the probability
is determined by the parameter θ. Given a policy π, the MDP
starts from sampling an initial state s0 according to I, and
then evolves according to:

st+1 := T (st, at ∼ π(a|st;θ)),

at each step t ≥ 1. For reasons that will be made clear
below, we only consider deterministic T and impose a finite
horizon of T steps on our MDP, so that we do not consider
states beyond T . We are now looking to find a good set of
parameters θ such that if we follow the policy π(a|s;θ) we
will obtain a high expected reward Eτ [Rτ |π;θ]:

θ∗ = arg max
θ

Eτ [Rτ |π;θ]. (3)

Here τ denotes a trajectory of the MDP. That is a sequence
s0, a0, r1, s1, a1, r2, · · · , sT−1, aT−1, rT , where rt is the
reward for having been in state st and taken action at. And
Rτ =

∑T
t=1 rt.

In this work, we use the policy gradient method to solve
the optimization problem. Weights are updated by stochastic
gradient ascent in the direction that maximizes the expected
reward:

∆θ ∝ ∂ log π(τ ;θ)

∂θ
Rτ , (4)

where π(τ ;θ) = π(a0|s0;θ) · · ·π(aT−1|sT−1;θ) denotes
the trajectory probability of τ .

We now show how our problem stated in the ”Formula-
tion” section can be formulated within this framework. We
assume that the labeled dataset contains T examples with
order fixed and (xt,yt) denotes the tth example. And we
will refer X<t to {x1, · · · ,xt−1} for t > 1 and X<t ≡ ∅
for t ≤ 1. Then the MDP is evolved sample by sample in the
index order and the state space is defined by:

S := {V |V ⊆ =({X,Y})}. (5)

In particular, at step t ≥ 1, the state space is defined by:

S(t) := {(V, (xt,yt))|V ∈ =({X<t,Y<t})},

and s0 = S(0) ≡ ∅. Intuitively, V gives the current subset
that we have chosen as a candidate for our maximizer so far.
For notational convenience, we denote the chosen set of a
given state s by V (s) with V (s0) ≡ ∅.

The action at at step t is to decide whether adding or not
(xt,yt) into V (st), as defined by:

A(st) := {(xt,yt), ∅}, (6)

and the transition function is defined by:

T (st, at) := V (st) ∪ {at}. (7)

Once the transition terminated at step T , we train the
supervised classifier f on the chosen subset V (sT ) ∪ {aT }

Algorithm 1 Trainable Undersampling

1: Input: training dataset {X,Y}, classification proce-
dure f , initial policy π(θ0), maximum number of
iteration N

2: Initialize: π(θ)← π(θ0); T ← dataset size |{X,Y}|
3: repeat
4: V (s)← ∅
5: for t = 1 to T do
6: st ← V (s) ∪ {(x,y)}
7: choose action at ∈ {(xt,yt), ∅} in probability
at ∼ π(a|st;θ).

8: V (s)← V (s) ∪ {at}
9: train the classifier f(·|V (s)) on V (s)

10: obtain the reward Rτ ← G({Y,f(X;V (s))})
11: update θ in the direction that maximizes the reward

∆θ ∝
∑T
t=1

∂ log π(at|st;θ)
∂θ Rτ .

12: until π(θ) converges or maximum number of iterations
N exceeds.

13: generate w({X,Y}) according to Eq. 9.
14: train f on w({X,Y})
15: Return: f

and treat the model performance over the given evaluation
metric as the reward rT , i.e.,

rT = G({Y,f(X;V (sT ) ∪ {at})}).

And we set the reward rt = 0 for all non-terminal time
steps t < T . Thus, the episodic reward Rτ =

∑T
t=1 rt =

rT is exactly the model performance when trained on the
chosen subset over the given evaluation metric, thus the
optimization direction is defined by:

∆θ ∝ ∂ log π(τ ;θ)

∂θ
rT . (8)

Once the policy has converged, we estimate w with the
deterministic policy:

w({X,Y}) = {a∗0, · · · , a∗T−1}, (9)

where a∗t = arg maxa∈A(st) π(a|st).
The general process of the training is as follows: we start

sampling a subset V = V (sT )∪{aT } of the training dataset
following the policy π. Then we train the classifier f on V ,
resulting in a function f(;V ) used to predict class labels for
all examples and obtain the task reward Rτ = rT . After
that we update the policy π and start a new episodic until π
converges. The above steps are summarized in Alg. 1.

Convergence and Complexity
The convergence of this algorithm is inherited from the
convergence of the policy search algorithm (Williams 1992).
This is because we fix the training procedure of the
supervised classifier, including its architecture, parameter
(if it has) initialization, and hyper-parameters. Thus, for
each sampled dataset, the classification performance, i.e.,
the reward, is fixed. The computational complexity of this
algorithm is O (N(TD + C)), where N is the episodic
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number for policy updating, T is the dataset size, D is the
computational cost for one-step state updating (st → st+1),
and C is the cost for classifier training.

Practical Implementation
We argue that the decision on whether to select an example
is based on both the example itself and the distribution of
the already chosen subset. To this end, we fix the order of
the training dataset, forming a data sequence:

{X,Y} = {(x1,y1), · · · , (xT ,yT )}
Then the state at the t step st is represented as a concatena-
tion of the sequence of chosen examples before t step and
the tth example. We apply the gated recurrent unit (GRU)
(Bahdanau, Cho, and Bengio 2014) to encode this data
sequence, generating a dense vector representation ht of st.
Note that the gated network takes both x and y as inputs. In
addition, if the tth example (xt,yt) is not selected, the state
presentation at the t + 1 step transits from ht−1, namely,
ht+1 = GRU(ht−1,xt+1⊕yt+1), otherwise it transits from
ht with ht+1 = GRU(ht,xt+1 ⊕ yt+1), where ⊕ denotes
the concatenation operation. To obtain the action probability
at the t step, we feed the state representation ht into a fully
connected multiple-layer-perceptron (MLP):

p(c|st) = MLP(ht) (10)

which performs a binary classification with class 1 indicat-
ing to choose the tth example, otherwise not. Examples are
then sampled in the probability of p(c = 1|st).

To reduce the size of the policy network and achieve faster
convergence, we applied the following tricks for training
the data sampler: 1) We pre-trained the policy π(θ0) with
false labels. The chosen probability of minority examples
was initialized as 0.9, and that of majority examples was
initialized as δ, with δ × (number of majority examples) =
0.9× (number of minority examples). In addition, for tasks
with a large dataset, we first pre-trained the policy on a
smaller training dataset, and then incrementally increased
the dataset size. This is because the state space increases
exponentially with the size of the training dataset, and the
time complexity for training the classifier is often super-
linear of the training dataset size. Pre-training the policy on
a smaller dataset can quickly obtain a good initialization for
the policy and consequently results in faster convergence,
thus reducing the N value of the model complexity. 2) For
tasks with high-dimensional input, we first reduced the input
dimension using Principle Component Analysis (PCA), and
then fed it as an input into the policy network (the supervised
classifier is still trained on the original representation). This
is to reduce the D value of the model complexity. 3) We
initialize the classifier using the model trained on the non-
sampled dataset. This is to reduce the C value of the model
complexity.

Experiments
This section presents the results of our experimental study
on two synthetic and five real-world class-imbalanced
datasets. On the synthetic datasets, we tested the applicabil-
ity of the proposed algorithm to incorporate both parametric

and non-parametric classifiers. On the real-world datasets,
we evaluated the effectiveness of our proposed algorithm
compared to the prevailing heuristic-based data sampling
methods and some state-of-the-art methods.

Because the experiments were designed to study the effec-
tiveness of the data sampling strategies, we assumed that the
training dataset could reveal the general data distribution,
and that the chosen classifier was suitable for the tested
class-imbalance tasks. Based on these assumptions, we first
chose the supervised classifier and its corresponding hyper-
parameters for each tested task with 5-fold cross-validation
on the original training dataset. Every tested method shared
the architecture of the obtained classifier. As for the hyper-
parameters of the sampling strategies themselves, such as
the sampling probability of each class, we chose the values
that maximized the best performance over 20 random runs.
The performance was reported by averaging the top 5 best
results obtained with the chosen hyper-parameters.

Synthetic Data
Two-Gaussian-Clouds: We created a dataset with 50,000
data points generated from a multivariate normal Gaussian
distribution whose u = [0, 0],Σ = I ∈ R2, and 1000
data points generated from a multivariate normal Gaussian
distribution whose u = [2, 0],Σ = I ∈ R2. Because
this dataset was easy to obtain, we also generated a testing
dataset to validate the generality. On this task, we tested
the following parametric and non-parametric classifiers:
Logistic Regression (LR), Support Vector Machine (SVM),
k-nearest neighbours (KNN), and Decision Tree (DT). The
performances were evaluated using the F1 of the minority
class.
Checker Board: Five 4 × 4 checker board datasets with
different imbalanced ratio were generated. We used the
SVM with rbf kernel as the supervised classifier and
evaluated the performance with the macro-F1.

Setup and Results. We implemented the GRU network
with 25 hidden units and the MLP with one-layer-perceptron
using Pytorch, and we used the RmsProp (Tieleman and
Hinton 2012) step rule for parameter optimization with its
initial learning rate set to 0.001. As for the implementation
of the supervised classifiers, we used the sklearn package
(Pedregosa et al. 2011).

Table 1: F1 of the minority class on the Two-Gaussian-
Clouds task. ORG means training the classifier on the
original dataset, and TU refers to the proposed data sampling
method. Inf refers to the optimum value we can obtained,
when the dataset size is approximately infinite.

Model Train Test Inf HyperORG TU ORG TU
LR 0.275 0.406 0.290 0.399

0.399

C = 10
SVM 0.106 0.409 0.084 0.396 C = 1000
KNN 0.356 0.404 0.268 0.370 neighbour = 7
DT 0.250 0.409 0.239 0.397 depth = 3
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Figure 1: Class boundaries determined by SVMs (rbf kernel) on 4 × 4 checker board datasets. Top: Trained on the original
dataset with different imbalance ratios. Bottom: Trained on the chosen subsets by our proposed data sampler. Best viewed in
color. As the imbalance ratio increases, the classifier trained on the original dataset was overwhelmed by the majority class.

Table 1 lists the comparison results on the Two-Gaussian-
Clouds dataset. We list the hyper-parameters used for each
of the classifier, and those not explicitly mentioned apply
the default setting of sklearn. In addition, we reported
the best performance we can obtained in theory when the
dataset size was approximately infinite, which is referred
to Inf in the table. From the table, we can first observe
that the tested classifiers perform poorly using the original
training dataset over the F1 measurement due to the class-
imbalance problem. Second, the proposed data sampling
method can consistently improve the model performance
for different classifiers. We argue that this is because the
data sampler is optimized over the evaluation metric. For
different classifiers, it can adjust its sampling strategy and
accordingly the sampled dataset distribution to achieve
similar and approximate optimal performances.

Figure 1 shows the class boundaries determined by the
SVMs when they were trained on the original checker
board dataset and on the corresponding chosen subset by
our data sampler. The performance by macro-F1 trained
on the original datasets are 0.831, 0.777, 0.622, and 0.564
corresponding to the imbalance ratios of 1:5, 1:10, 1:25, and
1:50, respectively. The corresponding performance trained
on the chosen subsets are 0.869, 0.832, 0.706, and 0.708,
respectively. In the figure, we can see that as the imbalance
ratio increases, the classifier was overwhelmed by the
majority class. In particular, when the ratio reaches 1:50,
almost all of the examples are classified as the majority
class. However, this problem is alleviated after applying our
proposed undersampling strategy.

Real Data
We next assessed the effectiveness of the proposed algorithm
on realistic tasks. Five real-world imbalanced datasets were
selected from different domains, with various imbalanced
ratios. Table 2 lists the detail of each dataset and the
corresponding supervised classifier we used.

Vehicle is an imbalanced version of the Vehicle Sil-

houettes dataset, where the positive examples belong to
class 1 (Saab) and the negative examples belong to the
rest (Fernández et al. 2008). Following the work of (Kang
and Cho 2006), we applied the Geometric Mean (GM) to
evaluate the performance. Page Blocks is an imbalanced
version of the Page Blocks dataset, where the negative
examples belong to the page layout of class text and
the positive examples belong to the rest (Fernández et
al. 2008). For performance measurement, it recommends
the Matthews correlation coefficient (MCC) (Matthews
1975) of the positive examples. Credit Fraud contains
transactions made by credit cards in September 2013 by
european cardholders (Dal Pozzolo et al. 2015). It is
highly imbalanced, with only 492 frauds out of 284,807
transactions. For performance measurement, it recommends
the AUCPRC of the Fraud class. SMS Spam is a set of
SMS tagged messages that have been collected for SMS
Spam research. It contains 5,574 SMS messages in English,
tagged according being ham (legitimate) or spam. For
performance measurement, it recommends the F0.5 of the
spam class. Diabetic Retinopathy (DR) is an imbalanced
version of the Diabetic Retinopathy Detection 1, where
the negative examples belong to class 0 (No DR) and the
positive examples belong to the rest. Following the work of
(Leibig et al. 2017), we used the AUCROC to measure the
performance.

Setup and Results. For the Credit Fraud task, we first
trained the proposed data sampler on a smaller training
dataset, containing all (denoted by n) of the positive
examples and 10n negative examples. Then, for every 200
iterations, we added additional 10n more negative examples
to the subset until all of the data were used. We implemented
the GRU network with 50 hidden units for this task, while

1You can get more information about this dataset in the Kaggle
Challenge. https://www.kaggle.com/c/diabetic-retinopathy-
detection
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Table 2: Description of the tested real-world datasets.

Dataset #Attribute #Example Feature
Format

Minority
Ratio

Evaluation
Metric

Used
Classifier

Vehicle 18 846 Numeric 25.65% GM SVM (rbf)
Page blocks 10 5,472 Numeric 10.21% MCC MLP
Credit Fraud 28 284,807 Numeric 0.17% AUCPRC DT
SMS Spam 8,749 5,574 Text 13.41% F0.5 LR
DR 262,144 17,563 Image 26.52% AUCROC CNN

Table 3: Performance of the proposed method TU and prevailing data sampling methods on the tested real-world datasets. Here,
RUS refers to the random undersampling method. The second group of methods are all undersampling-based and the third
group of methods are all oversampling-based.

Task ORG RUS NearMiss Cluster TomekLink ALLKNN SMOTE ADASYN TU
Vehicle 0.935 0.949 0.877 0.937 0.938 0.858 0.935 0.964 0.964
Page-blocks 0.897 0.903 0.878 0.877 0.895 0.867 0.897 0.902 0.915
Credit Fraud 0.849 0.860 0.817 0.584 0.840 0.809 0.849 0.848 0.880
SMS Spam 0.936 0.938 0.931 0.932 0.935 0.933 0.936 0.936 0.967
DR 0.930 0.942 0.921 0.933 0.934 0.927 0.930 0.944 0.958

with 25 units for the other tasks. For the SMS Spam task, we
reduced the input dimension to 100 with PCA for the policy
network. For the DR task, we used the publicly available
network architecture and weights provided by a participant
who scored very well in the Kaggle DR competition, which
we will call JFnet (Fauw 2015), as the classifier. And we re-
trained its last two fully connected layers on each sampled
dataset.

We first compared the proposed method against pre-
vailing data sampling methods. These methods include
six undersampling methods, i.e., Random Majority Under-
sampling (RUS), Near Miss (NearMiss) (Mani and Zhang
2003), Cluster Centroid (Cluster) (Lemaı̂tre, Nogueira,
and Aridas 2017), TomekLink (Tomek 1976b), and AL-
LKNN (Tomek 1976a), and two oversampling methods,
i.e., SMOTE (Chawla et al. 2002) and ADASYN (He et al.
2008). All of them were implemented using imbalanced-
learn (Lemaı̂tre, Nogueira, and Aridas 2017).

Table 3 lists the comparison results on the five real-
world datasets. From the table, We can obtain the following
observations. 1) The performance of the prevailing heuristic-
based data sampling methods varies considerably by dataset.
None of them can consistently outperform other heuristic-
based data sampling methods. This shows the drawbacks of
these method that their applicabilities are limited to specific
dataset. 2) Our proposed data sampling method TU can
consistently outperforms the heuristic-based data sampling
methods, showing its robustness and effectiveness.

We further compared the proposed method with some
state-of-the-art methods, though they may be inapplicable
to some tasks. These methods include EasyEnsemble (Liu,
Wu, and Zhou 2009), BalanceCascade (Liu, Wu, and
Zhou 2009), EUS (Garcı́a and Herrera 2009), and cost-
sensitive learning (Parambath, Usunier, and Grandvalet
2014). Note that we replace the 1NN model of EUS
with the corresponding used classifier for each dataset. In

addition, we compare with the model-level evaluation metric
optimization method using reinforcement learning (RL) (Wu
et al. 2016), which we refer to RL.

Table 4 lists the results of these baselines compared to our
proposed method. Results of the cost-sensitive method on
the Vehicle and Credit Fraud tasks are missing because there
are no published methods for the implementation on the used
evaluation metrics. Result of the BalanceCascade method
on the DR task is missing because the computation cost is
too large, and results of the RL method on the Vehicle and
Credit Fraud tasks are missing because it is not applicable
to the used classifiers. From the table we can see that our
proposed method can achieve comparable performance with
state-of-the-art methods. Note that, though the cost-sensitive
methods perform slightly better than our propose method
on some tasks, they need specific designation for the given
evaluation metric and cannot generally transform to other
measurements. In the meanwhile, the RL method suffers the
problem that cannot apply to non-parametric classifiers. In
contrast, our proposed method can easily apply to arbitrary
evaluation metric and classifier.

In addition, according to our aforementioned discussion
in the Related Work section, the proposed method, as a meta-
learning approach, can also collaborate with other data-
level operations. Here, we study the applicability of the
proposed to incorporate with the oversampling methods.
This can also assess if the oversampling methods can create
new informative instances instead of just changing the data
distribution.

Table 5 shows the performance of our proposed method
incorporating with SMOTE and ADASYN. From the table,
we can observe that, though the two oversampling methods
can improve the classification performance, they offer
negligible improvement to our proposed method on all of
the tested datasets. This means that they do not create many
new informative instances but instead only change the data
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Table 4: Comparison of our proposed method with state-of-the-art class-imbalance learning methods on the tested real-world
datasets. Some results of these methods are missing because there are no published methods for the implementation or the
computation cost is too large, or the method is not applicable to the used classifier. Cost-sensitive methods are implemented
according to their referenced paper, respectively.

Task CostSensitive EasyEnsemble BalanceCascade EUS RL TU
Vehicle −−− 0.953 0.955 0.960 −−− 0.964
Page-blocks 0.916 (2007) 0.904 0.901 0.907 0.916 0.915
Credit Fraud −−− 0.859 0.865 −−− −−− 0.880
SMS Spam 0.964 (2014) 0.939 0.935 0.965 0.962 0.967
DR 0.950 (2007) 0.945 −−− −−− 0.958 0.958

Table 5: Results of the proposed method incorporating with the oversampling technique. SMOTE+TU is to oversample the
dataset using SMOTE and then apply the proposed method to the oversampled dataset.

Task ORG SMOTE ADASYN TU SMOTE+TU ADASYN+TU
Vehicle 0.935 0.964 0.964 0.964 0.964 0.965
Page-blocks 0.897 0.902 0.898 0.915 0.917 0.915
Credit Fraud 0.849 0.848 0.849 0.880 0.881 0.880
SMS Spam 0.936 0.936 0.936 0.967 0.965 0.967
DR 0.930 0.944 0.943 0.958 0.957 0.956
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Figure 2: Time complexity of the proposed method on three tested datasets. The red dot line denotes the performance of the
random undersampling method.

distribution. Therefore, the optimum subset for the given
classier chosen from the oversampled dataset is similar to
that chosen from the original training dataset.

Finally, we empirically study the time complexity of the
proposed method on the tested datasets. Figure 2 depicts the
training process of the proposed method by time (second)
on three tested datasets using a single GPU. From the
figure, we can see that the proposed method can quickly
outperform the random undersampling method and achieve
further improvement.

Conclusion
In this work, we propose a trainable undersampling method.
It incorporates the evaluation metric optimization into
the data sampling procedure thus can learn which in-
stances should be discarded and which instances should
be preserved. Moreover, as a data level operation, it can
easily apply to arbitrary evaluation metric and classifier,
including the non-parametric ones. Empirical studies on

several synthetic and realistic datasets show that this method
can consistently outperform prevailing heuristic-based data
sampling methods and achieve better results than the state-
of-the-art methods in most of cases.
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