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Abstract

Despite neural networks have achieved prominent performance on many natural
language processing (NLP) tasks, they are vulnerable to adversarial examples. In
this paper, we propose Dirichlet Neighborhood Ensemble (DNE), a randomized
smoothing method for training a robust model to defense substitution-based attacks.
During training, DNE forms virtual sentences by sampling embedding vectors
for each word in an input sentence from a convex hull spanned by the word and
its synonyms, and it augments them with the training data. In such a way, the
model is robust to adversarial attacks while maintaining the performance on the
original clean data. DNE is agnostic to the network architectures and scales to large
models for NLP applications. We demonstrate through extensive experimentation
that our method consistently outperforms recently proposed defense methods by a
significant margin across different network architectures and multiple data sets.

1 Introduction

Deep neural networks are powerful but vulnerable to adversarial examples that are intentionally
crafted to fool the models. To address this issue, adversarial attacks and defenses against these attacks
have drawn significant attention in recent years [37, 14, 28, 30, 4, 27, 25, 13, 39, 8, 42]. In the context
of natural language processing (NLP), generating adversarial examples for texts has shown to be a
more challenging task than for images and audios due to their discrete nature. However, several recent
studies have demonstrated the vulnerability of deep neural networks in NLP tasks, including reading
comprehension [18], text classification [34, 38, 22, 1], machine translation [44, 12, 7], dialogue
systems [6], and dependency parsing [45]. These methods often attack an NLP model by replacing,
scrambling, and erasing characters or words under certain semantic and syntactic constraints. In
particular, most of them construct adversarial examples by substituting words with their synonyms in
an input text to maximally increase the prediction error while maintaining the fluency and naturalness
of the adversarial examples. In this study, we consider such a word substitution-based threat model
and discuss the strategy to defend such an attack.

The goal of adversarial defenses is to learn a model that is capable of achieving high test accuracy
on both clean and adversarial examples. Adversarial training is one of the most successful defense
methods for NLP models [27, 35, 46]. During the training time, they replace a word by one of
its synonyms that approximately maximizes the prediction loss. By training on these adversarial
examples, the model is robust to such perturbations. However, the relative positions between word
vectors of a word and its synonyms change dynamically during training as their embeddings are
updated independently. The point-wise guarantee becomes insufficient, and the resulting models
have shown to be vulnerable to strong attacks [1]. On the other hand, recently several certified
defense methods have been proposed to improve over adversarial training [19, 17] by certifying the
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performance within the convex hull formed by the embeddings of a word and its synonyms. However,
due to the difficulty of propagating convex hull through deep neural networks, they compute a very
loose outer bound using Interval Bound Propagation (IBP). As the result, the convex hall may contain
irrelevant words and lead to a significant performance drop on the clean data.

In this paper, we propose Dirichlet Neighborhood Ensemble (DNE) to create virtual sentences by
mixing the embedding of the original word in the input sentence with its synonyms. By training
on these virtual sentences, the model can enhance the robustness against word substitution-based
perturbations. Specifically, our method samples an embedding vector in the convex hull formed
by a word and its synonyms to ensure the robustness within such a region. In contrast to IBP, our
approach better represents the subspace of the synonyms when creating the virtual sentences. A
gradient-guided optimizer is then applied to search for more valuable adversarial points within the
convex hull, and the framework can be extended to higher-order neighbors (synonyms) to further
boost the robustness. In the inference time, the same Dirichlet sampling technique is used again and
the prediction scores on the virtual sentences are ensembled to get a robust output.

Through extensive experiments with various model architectures (bag-of-words, CNN, LSTM, and
attention-based) on multiple data sets, we show that DNE consistently achieves better performance
on clean and adversarial samples compared with existing defense methods. By conducting a detailed
analysis, we found that DNE enables the embeddings of a set of similar words to be updated together in
a coordinated way. In contrast, prior approaches either fix the word vectors during training (e.g., in the
certified defenses) or update individual word vectors independently (e.g., in the adversarial training).
We believe this is the key property why DNE leads to a more robust NLP model. Furthermore, unlike
the certified defenses, the proposed method is easy to implement and can be integrated into any
existing neural networks including the ones with large architecture such as BERT [9].

2 Related Work

In the text domain, adversarial training so far is one of the most successful defenses according to
many recent studies [27, 35, 46]. A family of fast-gradient sign methods (FGSM) was introduced
by Goodfellow et al. [14] to generate adversarial examples in the image domain, and they showed
that the robustness and generalization of machine learning models can be improved by including
high-quality adversaries in the training data. Miyato et al. [27] proposed a FGSM-like adversarial
training method to the text domain by applying perturbations to the word embeddings rather than to
the original input itself. Sato et al. [35] extended the work of [27] to improve the interpretability by
constraining the directions of perturbations toward the existing words in the word embedding space.
Given a word, such direction is calculated by the weighted sum of unit vectors from the word to its
nearest neighbors. Barham et al. [2] presented a sparse projected gradient descent (SPGD) method to
impose a sparsity constraint on perturbations by projecting them onto the directions to nearby word
embeddings with the highest cosine similarities.

Zhang and Yang [41] applied several types of noises to perturb the input word embeddings, such
as Gaussian, Bernoulli, and adversarial noises, to mitigate the overfitting problem of NLP models.
For the adversarial noise, the perturbation is added in the direction of maximally increasing the
loss function. Zhu et al. [46] proposed a novel adversarial training algorithm, called FreeLB (Free
Large-Batch), which adds adversarial perturbations to word embeddings and minimizes the resultant
adversarial loss inside different regions around input samples. They add norm-bounded adversarial
perturbations to the embeddings of the input sentences using a gradient-based method and enlarge
the batch size with diversified adversarial samples under such norm constraints. However, they focus
on the effects on generalization rather than the robustness against adversarial attacks.

Although adversarial training can empirically defense the attack algorithms used during the training,
the trained model often still cannot survives from another sophisticated attacks. Recently a set of
certified defenses have been introduced, which provide guarantees of robustness to some specific
types of attacks. For example, Jia et al. [19] and Huang et al. [17] use a bounding technique, interval
bound propagation (IBP) [15, 11], to formally verify a model’s robustness against word substitution-
based perturbations. Shi [36] proposed the first robustness verification method for transformers by
IBP-style technique. However, these defenses often lead to loose upper bounds for arbitrary networks
and result in the greater cost of clean accuracy. Furthermore, most techniques developed so far
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require knowledge of the architecture of the machine learning models and still remain hard to scale to
complex prediction pipelines.

In the image domain, randomization has been shown to overcome many of these obstacles in IBP-
based defense. Empirically, Xie et al. [40] showed that random resizing and padding in the input
domain can improve the robustness. Liu et al. [23] proposed to add Gaussian noise in both input
layer and intermediate layers of CNN in both training and inference time to improve the robustness.
Lecuyer et al. [21] provided a certified guarantee of this method, and later on the bound is significantly
improved in [8]. The resulting algorithm, called random smoothing, has become widely used in
certifiying `2 robustness for image classifiers. To the best of our knowledge, these random smoothing
methods have not been used in NLP models, and the main reason is that the adversarial examples in
texts are usually generated by word substitution-based perturbations instead of small `p norm, and as
shown in our experiments, randomly perturbing a word to its synonyms performs poorly in practice.
The proposed algorithm can be viewed as a kind of randomized defense on NLP models, where our
main contribution is to show that it is important to ensure the model works well in a region within
the convex hull formed by the embeddings of a word and its synonyms instead of only ensuring
model is good under discrete perturbation. Furthermore, we show the method can be combined with
adversarial training to further boost the empirical robust accuracy.

3 Method

Let f be a base classifier which maps an input sentence x ∈ X to a class label y ∈ Y . We consider the
setting where for each word xi in the sentence x, we are given a set of its synonyms S(xi) including
xi itself, where we know replacing xi by any of S(xi) is unlikely to change the semantic meaning of
the sentence1. We relax the set of discrete points (a word and its synonyms) to a convex hull spanned
by the word embeddings of all these points, denoted by C(xi). We assume any perturbation within
this convex hull will keep the semantic meaning unchanged, and define a smoothed classifier g(x)
based on random sampling within the convex hull. In the training time, the base classifier is trained
with “virtual” data augmentation in the embedding space, where each xi is replaced by a point in
the convex hull containing C(xi) by the proposed sampling algorithm described below. A novel
adversarial training algorithm is also used to enable NLP models to defense against the strong attacks
that search for the worst-case over all combinations of word substitutions. In the inference time, a
similar sampling strategy is conducted and a CBW-D ensemble algorithm [10] is used to compute the
final prediction.

Note that it is impossible to exactly calculate the probabilities with which f classifies x as each
class, so we use a Monte Carlo algorithm for evaluating g(x). As an illustration in Fig. 1 (a), for
an input sentence x, we draw k samples of x̂ by running k noise-corrupted copies of x through
the base classifier f(x̂), where x̂ is generated by replacing the embedding of every word xj with a
point randomly sampled with the Dirichlet distribution from C(xj) (the pentagon with yellow dashed
borders). If the class y appeared with maximal weight in the categorical distribution x̂, the smoothed
classifier g(x) returns y. In the following, we introduce each component of the proposed algorithm.

3.1 Dirichlet Neighborhood Sampling

The random perturbations of x are combinatorial in nature, and thus training the base classifier f that
consistently labels any perturbation of x as y requires checking an exponential number of predictions.
To better reflect those discrete word substitution-based perturbations, we sample the points from a
convex hull using the Dirichlet distribution. This allows us to control how far we can expect the
points are from any vertex of the convex hull. If a sampled point is very close to a vertex (i.e., a
word), it simulates a word substitution-based perturbation in which the vertex is chosen to replace the
original one. Any point sampled from C(xi) is a convex combination of the embeddings of S(xi):

ν(xi) =
∑

xj∈S(xi)

βj · xj , (1)

1Follow [19], we base our sets of allowed word substitutions S(xi) on the substitutions proposed by Alzantot
et al [1]. They compute the eight nearest neighbors of the selected word according to the distance in the GloVe
embedding space [32], and then use the counter-fitting method [29] to post-process the adversary’s GloVe vectors
to ensure that the nearest neighbors are synonyms.
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Figure 1: Consider a word (sentence of length one) xi and its convex hull C(xi) (projected to 2D for
illustration) spanned by the set of its synonyms (blue circles). We assume that an adversary replaces
xi with one of its synonyms xj . (a) Evaluating the smoothed classifier at the input xj . The decision
regions of the base classifier f are drawn in different colors. If we expand C(xi) to the polygon with
green dashed borders when training the base classifier f , the size of the intersection of this polygon
and C(xj) is large enough to ensure that the smoothed classifier g labels xj as f(xi). Here, g(xj) is
“blue.” (b) An example convex hull used to train the base classifier. Since the size of the intersection
of C(xi) and C(xj) is small, we expand C(xi) to the convex hull spanned by xi’s neighbors and
“neighbors of neighbors” in their embedding space when training the base classifier f . Starting from
three points v1, v2 and v3 sampled from the expanded convex hull (the largest polygon with green
dashed borders), q1, q2 and q3 are the local “worst-case” points found by searing over the entire
convex hull with the gradient-guided optimization method.

where βj ≥ 0, Σjβj = 1, and xj (in bold type) denotes the embedding of xj . A vector β contains
the weights drawn from the Dirichlet distribution as follows:

β1, . . . , βm ∼ Dir(α1, . . . , αm), (2)

where m is the size of S(xi), and the Dirichlet distribution is parameterized by a vector of α used to
control the degree in which the words in S(xi) contribute to generate the vector ν(xi). There are two
extreme cases. If α = 0, only one of S(xi) is sampled to replace xi; If α = ∞, the result ν(xi) is
equal to the average of the embeddings of all of the words in S(xi).

3.2 Training the Base Classifier with Two-Hop Neighbors

For the smoothed classifier g to classify an adversarial example of x correctly and robustly, f needs to
consistently classify x̂ as the gold label of x. Therefore, we train the base classifier with virtual data
augmentation x̂ for each training example x. In Fig. 1 (b), we illustrate the process by considering a
sentence with one word xi and the set of its synonyms (shown as blue circles). The input perturbations
span a convex hull of C(xi) around the word xi (the pentagon with blue borders, projected to 2D
here). Assuming that the word xi is replaced with xj by an adversary, noise-corrupted samples will
be drawn from C(xj) (the pentagon with yellow dashed borders) instead of C(xi). If the size of the
intersection of C(xi) and C(xj) is small, we cannot expect f will consistently classify xj as the same
label as xi. Therefore, we expand C(xi) to the convex hull spanned by the word embeddings of the
union of S(xi) and all of S(xj), xj ∈ S(xi), namely xi’s 1-hop neighbors and 2-hop neighbors in
their embedding space, denoted by B(xi).

Such expansions will slightly hurt the performance on the clean data. Recall that different values of α
can be used to control the degree in which the 1-hop and 2-hop neighbors to contribute to generate x̃.
In our implementation, we let the expected weights of the 2-hop neighbors are less than one-half of
those of the 1-hop neighbors when computing x̃ as Eq. (1) to reduce the impact on the clean accuracy.
We use B(xi) to denote the expanded convex hull of C(xi), and x̃ to a virtual example created by
replacing the embedding of every word xi in an input sentence x with a point randomly sampled
from B(xi) by the Dirichlet distribution.

The base classifier is trained by minimizing the cross-entropy error with virtual data augmentation
by the gradient descent. We assume the base classifier takes form f(x) = argmaxc∈Y sc(x), where
each sc(x) is the scoring function for the class c. That is, the outputs of the neural networks before
the softmax layer. Our objective is to maximize the sum of the log-probabilities that f will classify
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each x̃ as the label of x. Let D be a training set of n instances, and each of them is a pair of (x, y):∑
∀(x,y)∈D

logPx̃(f(x̃) = y) =
∑

∀(x,y)∈D

logEx̃1

[
argmax

c∈Y
sc(x̃) = y

]
, (3)

where x̃ is a virtual example randomly created for an input example x. The softmax function can be
viewed as a continuous, differentiable approximation of argmax:

1

[
argmax

c∈Y
sc(x̃) = y

]
≈ exp(sy(x̃))∑

c∈Y exp(sc(x̃))
. (4)

By the concavity of log and Jensen’s inequality, the objective is approximately lower-bounded by:∑
∀(x,y)∈D

Ex̃

[
log

exp(sy(x̃))∑
c∈Y exp(sc(x̃))

]
. (5)

This is the negative cross-entropy loss with virtual data augmentation. Maximizing Eq. (5) approxi-
mately maximizes Eq. (3).

Since the virtual data point defined in Eq. (1) is a linear combination of embeddings of S(xi), the
back-propagation will propagate the gradient to all these embeddings with nonzero coefficients, thus
allowing updating all these embeddings together in a coordinated way when performing parameter
updates. As illustrated in Fig. 1, the whole green convex hull will be shifted together at each iteration.
In contrast, traditional adversarial training only updates the embedding of one synonym (a vertex of
the convex hull), which will distort the relative position of those embeddings and thus become slower
and less stable. It is probably why the word embeddings are fixed during training in the certified
defenses [17, 19]. Even though the word embeddings can be pre-trained, holding embeddings fixed
makes them impossible to be fine-tuned for the tasks of interest, which may hurt the performance.

3.3 Adversarial Training

To promote higher robustness and invariance to any region within the convex hull, we further propose
to combine Dirichlet sampling with adversarial training to better explore different regions inside the
convex hull B(xi). Any point sampled from B(xi) is represented as the convex combination of the
embeddings of its vertices, which ensures that a series of points keep stay inside of the same B(xi)
while searching for the worst-case over the entire convex hull by any optimization method.

Assuming that a virtual example x̃ is generated for an input text x, we search for the next adversarial
example to maximize the model’s prediction error by updating every vector of weights β = exp(η)
by the following formula, each of them is used to represent a point sampled from B(xi) as Eq. (1):

η ← η − ε
∥∥∥∥∂ log p(x̃, y)

∂η

∥∥∥∥
2

, p(x̃, y) =
exp(sy(x̃))∑
c∈Y exp(sc(x̃))

, (6)

where ε is the step size. In order to ensure that the updated β still satisfy βj ≥ 0 and Σjβj = 1, we
sequentially apply logarithmic and softmax functions to β after it is randomly drawn from Dir(α).
Note that softmax(log(β)) = β, and η will be updated instead of β in our implementation. By
updating η only, the representation defined in Eq. (1) also ensures that a series of points keep stay
inside of the same convex hull while searching for the worst-case over B(xi) by gradient-guided
optimization methods.

As illustrated in Fig. 1 (b), we apply this update multiple times with small step size (arrow-linked
red circles represent data points generated after each update by adding gradient-guided perturbations
to their preceding ones). When training the base classifier f , we add all of the virtual examples
generated at every search step (i.e., all of the points indicated by the red circles in Fig. 1 (b)) into the
training set to better explore different regions around x.

3.4 Ensemble Method

As mentioned above, if the base classifier f is a neural network, it is impossible to exactly calculate
the probabilities with which f classifies x as each class. Following randomized defense in computer
vision [23, 21, 8], we use a Monte Carlo algorithm for evaluating g(x). Given an input sentence x,
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we draw k Monte Carlo samples of x̂ by running k noise-corrupted copies of x through the base
classifier f(x̂), where each x̂ is created by replacing the embedding of every word xi in the sentence
x with a point randomly sampled with the Dirichlet distribution from C(xi) (not from the expanded
convex hull B(xi) when testing).

We combine predictions by taking a weighted average of the softmax probability vectors of all the
randomly created x̂, and take the argmax of this average vector as the final prediction. We choose to
use CBW-D [10] to compute those weights. The idea behind it is to give more weights the predictions
that have more confidence in their results. CBW-D calculates the weights w as a function of the
differences between the maximum value of the softmax distribution and the other values as follows:

w =
∑

c∈Y,c 6=y

(p(x̂, y)− p(x̂, c))r, (7)

where y is the class having the maximum probability in a prediction, r is a hyperparameter tuned
using cross-validation in preliminary experiments.

4 Experiments

We conducted experiments on multiple data sets for text classification and natural language inference
tasks. Various model architectures (bag-of-words, CNN, LSTM, and attention-based) were used to
evaluate our Dirichlet Neighborhood Ensemble (DNE) and other defense methods under two recently
proposed attacks [1, 33]. Ren et al. [33] described a greedy algorithm, called Probability Weighted
Word Saliency (PWWS), for text adversarial attack based on word substitutions with synonyms. The
word replacement order is determined by taking both word saliency and prediction probability into
account. Alzantot et al. [1] developed a generic algorithm-based attack, denoted by GA, to generate
semantically and syntactically similar adversarial examples. They also use a language model (LM)
[5] to rule out candidate substitute words that do not fit within the context. However, unlike PWWS,
ruling out some candidates by the LM will greatly reduce the number of candidate substitute words
(65% off in average). For fair comparison, we report the robust accuracy under GA attack both with
and without using the LM. For each date set, we measure accuracy on perturbations found by the two
attacks (PWWS and GA) on 1000 randomly selected test examples.

We primarily compare with the adversarial training (ADV) [26] and the interval bound propagation
(IBP) based methods [17, 19]. The former can improve model’s robustness without suffering much
drop on the clean input data by adding adversarial examples in the training stage. The latter was shown
to be more robust to word substitution-based perturbations than ones trained with data augmentation.
To demonstrate that mixing the embedding of the original word with its synonyms performs better
than naively replacing the word with its synonyms, we developed a strong baseline, denoted by RAN.
The models trained by RAN will take as inputs the corrupted copy of each input sentence, in which
every word of the sentence is randomly replaced with one of its synonyms. In the inference time, the
same random replacement is used and the prediction scores are ensembled to get an output. RAN can
be viewed as a naive way to apply random smoothing to NLP models.

4.1 Text Classification

We experimented on two text classification data sets: Internet Movie Database (IMDB) [24] and AG
News corpus (AGNEWS) [43]. IMDB has 50, 000 movie reviews for binary (positive or negative)
sentiment classification, and AGNEWS consists of about 30, 000 news articles pertaining to four
categories. We implemented three models for these text classification tasks. The bag-of-words
model (BOW) averages the word embeddings for each word in the input, then passes this through a
one-layer feedforward network with 100-dimensional hidden state to get a final logit. The other two
models are similar, except they run either a CNN or a two-layer LSTM on the word embeddings. All
models are trained on cross entropy loss, and their hyper-parameters are tuned on the validation set.
Implementation details are provided in Appendix A.1.

In Table 1, we present both clean accuracy (CLN) and accuracy under two attack algorithms (PWWS
and GA) on IMDB with three different model architectures (BOW, CNN and LSTM). We use GA-LM
to denote the GA-based attack that rules out candidate substitute words that may not fit well with the
context with the help of the LM [5], and ORIG to the testing and adversarial accuracy of the models
trained as usual without using any defense method.
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Table 1: Text classification on IMDB dataset.

IMDB BOW CNN LSTM
CLN PWWS GA-LM GA CLN PWWS GA-LM GA CLN PWWS GA-LM GA

ORIG 89.9 4.1 1.2 0.4 90.2 18.1 4.2 2.0 89.8 0.2 2.1 0.0
ADV 86.4 77.4 80.0 77.2 87.0 72.1 76.0 72.0 85.6 35.4 56.6 32.0
IBP 79.6 75.4 70.5 66.9 79.6 76.3 75.0 70.9 76.8 72.2 64.7 64.3
RAN 89.7 39.8 36.2 9.2 88.9 27.2 36.5 13.3 89.7 37.7 40.5 8.1
DNE 86.6 82.0 80.5 77.2 87.9 82.3 81.2 76.5 88.2 82.3 80.5 77.2

Table 2: Text classification on AGNEWS dataset.

AG BOW CNN LSTM
NEWS CLN PWWS GA-LM GA CLN PWWS GA-LM GA CLN PWWS GA-LM GA
ORIG 89.4 49.5 57.6 17.2 89.0 35.0 46.0 12.1 92.5 46.2 52.8 9.8
ADV 88.8 84.5 85.7 82.5 88.4 80.2 82.5 75.3 92.4 85.4 87.1 78.8
IBP 87.4 85.1 86.8 81.3 87.8 86.2 86.7 82.7 84.0 82.3 82.9 77.9
RAN 89.0 78.1 75.2 51.3 88.7 78.2 74.4 51.7 92.1 81.4 81.4 51.9
DNE 87.8 86.7 87.0 85.9 87.3 85.7 85.9 85.2 91.9 90.9 90.6 89.5

As we can see from Table 1, DNE (k = 16) outperforms ADV and IBP on the clean input data, and
consistently performs better than the competitors across the three different architectures under all
of the attacks we consider. For the text classification, LSTMs seem more vulnerable to adversarial
attacks than BOWs and CNNs. Under the strongest attack GA, while the accuracies of LSTMs
trained by ORIG, ADV, IBP, and RAN dropped to 0.0%, 32%, 64.3%, and 8.1% respectively, the
LSTM trained by DNE still achieved 77.2% accuracy. The results on AGNEWS are reported in
Table 2, and we found the similar trends as those on IMDB. Any model performed on AGNEWS
shows to be more robust than the same one on IMDB. It is probably because the average length of
the sentences in IMDB (255 words in average) is much longer than that in AGNEWS (43 words in
average). Longer sentences allow the adversaries to apply more word substitution-based perturbations
to the examples. Generally, DNE performs better than IBP and comparable to ADV on the clean
data, while it outperforms the others in all other cases with only one exception of 86.7% (just 0.8%
difference) achieved by IBP with CNN under GA-LM attack. The results for both datasets show that
our DNE consistently achieves better clean and robust accuracy compared with existing defenses.

4.2 Natural Language Inference

We conducted the experiments of natural language inference on Stanford Natural Language Infer-
ence (SNLI) [3] corpus, which is a collection of 570, 000 English sentence pairs (a premise and a
hypothesis) manually labeled for balanced classification with the labels entailment, contradiction, and
neutral. We also implemented three models for this task. The bag-of-words model (BOW) encodes
the premise and hypothesis separately by summing their word vectors, then feeds the concatenation
of these encodings to a two-layer feedforward network. The other two models are similar, except
they run either a Decomposable Attention (DecomAtt) [31] or BERT [9] on the word embeddings
to generate the sentence representations, which uses attention between the premise and hypothesis
to compute richer representations of each word in both sentences. All models are trained on cross
entropy loss, and their hyper-parameters are tuned on the validation set (see Appendix A.2).

As reported in Table 3, DNE generally performs better than the others on the robust accuracy while
suffering little performance drop on the clean data on SNLI. Although our proposed baseline RAN
(k = 16) achieves a slightly higher accuracy (just 1% difference) with BERT under PWWS attack,
it’s accuracy rapidly drops to 27% under the more sophisticated attack GA, where DNE still yields
61.6% in accuracy. The results on SNLI show that DNE can be applied to attention-based models like
DecomAtt and scale well to large architectures such as BERT. We leave the results of IPB with BERT
as unknown because there is still a question whether IBP-based method can be applied to BERT.

7



Table 3: Natural language inference on SNLI dataset.

SNLI BOW DecomAtt BERT
CLN PWWS GA-LM GA CLN PWWS GA-LM GA CLN PWWS GA-LM GA

ORIG 80.4 20.4 38.3 6.6 81.9 20.5 39.2 6.7 90.5 42.6 56.7 19.9
ADV 80.4 67.9 71.0 59.5 81.9 71.7 73.8 65.2 89.4 68.2 79.0 58.2
IBP 79.3 74.9 75.0 71.0 77.3 72.8 73.7 70.5 −− −− −− −−
RAN 79.0 65.7 44.4 27.8 80.3 67.2 51.1 30.6 89.9 72.7 42.7 27.0
DNE 79.8 76.3 75.3 71.5 80.2 77.4 76.7 74.6 89.3 71.7 80.0 61.6

4.3 Effect of Parameters of Dirichlet Distribution

Recall that the Dirichlet distribution is parameterized by a vector of α, and given a word xi different
values of α are used to control the degree in which its 1-hop and 2-hop neighbors to contribute to
generate virtual adversarial examples, and also determines the size of the expansion from C(xi) to
B(xi). In order to reduce the impact on the clean accuracy, we let the expected weights of the 2-hop
neighbors are λ ∈ (0, 0.5] times of those of the (1-hop) nearest neighbors. We tried a few different
values of α and λ on IMDB to understand how the choice of them impact upon the performance. As
shown in Table 4, we found that if the value of α is fixed the greater the value of λ the more robust the
models will become, but the worse they perform on the clean input data. A small value of α seems to
be preferable, which allows us to better simulate the discrete word substitution-based perturbations.

Table 4: Effect of Parameter α on IMDB.

α, λ CLN PWWS GA-LM GA
0.1, 0.02 86.2 79.0 76.0 68.2
0.1, 0.1 86.2 81.4 79.4 75.4
0.1, 0.5 84.8 82.2 79.8 76.4
1.0, 0.02 85.6 78.8 80.4 75.6
1.0, 0.1 85.1 80.4 80.8 77.8
1.0, 0.5 81.6 78.6 79.4 78.2

Table 5: Ablation Study on IMDB.

Model CLN PWWS GA-LM GA
DNE 86.2 81.4 79.4 75.4
w/o EXPANSION −0.1 −14.2 −24.0 −45.0
w/o ADV-TRAIN +1.6 − 7.8 −19.8 −34.6
w/o COORD-UPD −0.0 − 4.2 − 9.0 −12.8
w/o ENSEMBLE −0.4 − 1.8 − 7.0 − 9.4

4.4 Ablation Study

We conducted an ablation study on DNE over IMDB to analyze the robustness and generalization
strength of different variants. The “w/o EXPANSION” in the second row of Table 5 indicates that
given any word xi in a sentence we generate virtual examples by sampling from C(xi) instead of
the expanded B(xi) during the training. The variant of DNE trained without using the adversarial
training algorithm described in Section 3.3 is indicated by “w/o ADV-TRAIN”. If the single-point
update strategy is applied to train DNE, we still use the same gradient-guided optimization method
to find adversarial examples over B(xi), but the found adversarial example xj is represented as
xi + ∆, where ∆ is the distance between xi and xj . By such representation only xi will be updated
during the training instead of the embeddings of all its synonyms, and this variant is indicated by
“w/o COORD-UPD”. We also report in the last row the results predicted without using the ensemble
method (i.e., k = 1) describe in Section 3.4.

As we can see from Table 5, the differences in accuracy among the variants of DNE are negligible on
the clean data. The key components to improve the robustness of the models in descending order
by their importance are the following: sampling from the expanded convex hull B(xi), combining
with adversarial training, updating the word embeddings together, and using the ensemble to get the
prediction. We also observed that the stronger the attack method, the more effective these components.

5 Conclusion

In this study, we develop a novel defense algorithm to NLP models to substantially improve the
robust accuracy without sacrificing their performance too much on clean data. This method is broadly
applicable, generic, scalable, and can be incorporated with negligible effort in any neural network. A
novel adversarial training algorithm is also proposed, which enables NLP models to defense against
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the strong attacks that search for the worst-case over all combinations of word substitutions. We
demonstrated through extensive experimentation that our adversarially trained smooth classifiers
consistently outperform all existing empirical and certified defenses by a significant margin on IMDB,
AGNEWS and SNLI across different network architectures, establishing state-of-the-art for the
defenses against text adversarial attacks.
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Appendix

A.1 Experimental Details for Text Classification

We report in Table 6 and 7 the values of hyperparameters used to train the text classification models, and the
hyperparameter values of Dirichlet Neighborhood Ensemble (DNE) in Table 8. All models are trained on
cross-entropy loss, and their hyper-parameters are tuned on the validation sets.

Table 6: Hyperparameters for training the text classification models.

Model Word Embedding Hidden Size Layer Kernel Size
BOW 300, GloVe [32] 100 −− −−
CNN 300, GloVe [32] 100 1 3
LSTM 300, GloVe [32] 100 2 −−

Table 7: Training hyperparameters for the text classification (BOW, CNN, and LSTM) models. The
same values were used for all training settings (plain, data augmentation, and robust training).

Hyperparameter Value
Optimizer 0.5× 10−3, Adam [20]
Dropout (word embedding) 0.3
Weight decay 1× 10−4

Batch size 32
Gradient clip (−1, 1)
Maximum number of epochs 20

Table 8: Hyperparameters of DNE for text classification.

Hyperparameter Value
Dirichlet distribution parameter α (the nearest neighbors) 0.1 (IMDB), 1.0 (AGNEWS)
Parameter λ (neighbors of neighbors) 0.1 (IMDB), 0.5 (AGNEWS)
Step size ε (adversarial training) 10
Number of steps (adversarial training) 3
Parameter r (ensemble method) 3
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A.2 Experimental Details for Natural Language Inference

All models take the pre-trained Glove word vectors as inputs and are trained on cross-entropy loss. Their
hyper-parameters are tuned on the validation sets.

Bag of Words (BOW): We use a bag-of-word model with the same hyperparameters as shown in Table 6 to
encode the premise and hypothesis separately by summing their word vectors, then feeds the concatenation of
these encodings to a two-layer feedforward network with a 300-dimensional hidden state. We used the Adam
optimizer (with a learning rate 0.5 × 10−3), and set the dropout rate on word embedding to 0.3, the weight
decay to 1× 10−4, the batch size to 128, the maximum number of epochs to 20, and the gradient clip to (−1, 1).

Decomposable Attention (DecomAtt): We implemented the decomposable attention follows the original
described in [31] except for a few differences listed below:

• We did not normalize GloVe vectors [32] to have norm 1.
• We used the Adam optimizer (with a learning rate of 0.5× 10−3) instead of AdaGrad.
• We used a dropout rate of 0.3 on word embedding.
• We used a batch size of 128 instead of 4.
• We clipped the value of gradients to be within (−1, 1).
• We set the value of weight decay to 1× 10−4.
• We did not use the intra-sentence attention module.

Bidirectional Encoder Representations from Transformers (BERT): We implemented the BERT follows
the original described in [9] except for a few differences listed below:

• We applied a “bert-base-uncased” architecture (12-layer, 768-hidden, 12-heads, 110M parameters).
• We use the Adam optimizer (with a learning rate of 0.4× 10−4).
• We used a batch size of 8.
• We set the number of epochs to 3.
• We clipped the value of gradients to be within (−1, 1).
• We set the value of weight decay to 1× 10−4.
• We used slanted triangular learning rates described in [16], which first linearly increases the learning rate and

then linearly decays it.

We report in Table 9 the hyperparameter values of Dirichlet Neighborhood Ensemble (DNE) used for SNLI
benchmark, and they are tuned on the validation set of SNLI.

Table 9: Hyperparameters of DNE for natural language inference.

Hyperparameter Value
Dirichlet distribution parameter α (the nearest neighbors) 1.0
Parameter λ (neighbors of neighbors) 0.5
Step size ε (adversarial training) 10
Number of steps (adversarial training) 3
Parameter r (ensemble method) 3
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