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Abstract

Multi-task learning (MTL) has received considerable at-
tention, and numerous deep learning applications benefit
from MTL with multiple objectives. However, constructing
multiple related tasks is difficult, and sometimes only a
single task is available for training in a dataset. To tackle
this problem, we explored the idea of using unsupervised
clustering to construct a variety of auxiliary tasks from
unlabeled data or existing labeled data. We found that some
of these newly constructed tasks could exhibit semantic
meanings corresponding to certain human-specific attributes,
but some were non-ideal. In order to effectively reduce
the impact of non-ideal auxiliary tasks on the main task,
we further proposed a novel meta-learning-based multi-task
learning approach, which trained the shared hidden layers on
auxiliary tasks, while the meta-optimization objective was
to minimize the loss on the main task, ensuring that the
optimizing direction led to an improvement on the main task.
Experimental results across five image datasets demonstrated
that the proposed method significantly outperformed existing
single task learning, semi-supervised learning, and some data
augmentation methods, including an improvement of more
than 9% on the Omniglot dataset.

1 Introduction

Multi-task learning (Caruana 1997) is a learning paradigm
in machine learning. Its goal is to improve the general-
ization performance of a single task by leveraging useful
information contained in multiple related tasks (Zhang and
Yang 2017). Multi-task learning has been used successfully
across all applications of machine learning, from natural
language processing (Collobert and Weston 2008) and
speech recognition (Deng, Hinton, and Kingsbury 2013)
to computer vision (Girshick 2015) and reinforcement
learning (Wilson et al. 2007). Critical assumptions in
these applications are that MTL typically involves very
heterogeneous tasks and the tasks are closely related in some
way (Ruder 2017; Zhang and Yang 2017).

Although the use of MTL to improve single task learning
(STL) has achieved great success (Luong et al. 2015;
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Figure 1: Examples of k-means clustering classes based on
ACAI embeddings with random scaling (Berthelot et al.
2019), which can be used to perform multi-task learning. (a)
Some of the clusters correspond well to true labels. (b) Some
of the clusters exhibit semantic meaning, like the heads of
the animals. (c) Others are non-ideal or are based on image
artifacts, which could cause a performance deterioration. We
proposed a meta-learning-based MTL to tackle this problem.

Yim et al. 2015), these methods continue to have difficulty
with two issues. First, we have always been hindered in
searching a sufficient number of related tasks (Bingel and
S@gaard 2017). In particular, in some domains, only a
single task is available for training. Second, because of
the lack of a good notion of when two tasks should be
considered related (Ruder 2017), it is difficult to avoid
introducing some unrelated tasks, which can result in the
learned features being negatively influenced (Zhang and
Yang 2017). Meyerson and Miikkulainen (2018) explored
the pseudo-task augmentation method, which verified that
MTL improved the generalization performance of single
task. However, they only regarded the duplicates of a single
task as multiple tasks, which lost the diversity of the task and
could not take advantage of unlabeled data.

In this work, we considered an extreme situation where
only a single task was available for training, but we expected
to find sufficient related tasks and utilize the framework
of deep MTL to improve the single task learning. To
tackle the above issues, we used unsupervised clustering



methods on the unlabeled data or existing labeled data
to automatically construct auxiliary tasks. Because the
unsupervised clustering methods are fast implemented on a
large scale, we can easily to obtain sufficient tasks. As for the
relatedness of tasks, because we constructed the auxiliary
tasks from the same data distribution as the main task, all of
the tasks were F-related and could yield provable multiple-
task learning guarantees (Ben-David and Borbely 2008)'.
We found that with simple k-means clustering mechanisms
for partitioning the embedding space (Bojanowski and
Joulin 2017; Donahue, Krihenbiihl, and Darrell 2016), some
of the clusters could construct reasonable related auxiliary
tasks (Coates and Ng 2012). As shown in Figure 1 (a) and
(b), some of the clusters correspond well to unseen labels or
exhibit semantic meaning. Hence, these related tasks could
benefit the MTL (Bonilla, Chai, and Williams 2008).

Unsupervised clustering would inevitably produce
the non-ideal clusters, as shown in Figure 1 (c), which
could cause a performance deterioration. To tackle this
problem, we introduced a meta-learning-based multi-task
learning framework (Meta-MTL), an novel variant of
Model-Agnostic Meta-Learning (MAML) (Finn, Abbeel,
and Levine 2017), to assist in the fast and robust adaptation
of the MTL model, which drove the training of any auxiliary
tasks to be beneficial to the main task. Specifically, Meta-
MTL adopted a hard parameter sharing framework, which
trained the shared hidden layers on a set of auxiliary tasks,
while the meta-optimization objective was to minimize
the loss on the main tasks, ensuring that the optimizing
direction led to an improvement on the main task.

The main contributions of this paper can be summarized
as follows: 1) we studied the multi-task learning in an
extreme situation where only a single task was available, and
used the k-means clustering to conduct multi-task learning
to improve STL; 2) we proposed a novel meta-learning-
based MTL method to assist in the fast and robust adaptation
for the main task, which could effectively avoid the influence
of the non-ideal clusters; and 3) experimental results across
five image datasets indicated that the proposed method sig-
nificantly outperformed the STL, semi-supervised learning,
and some data augmentation methods.

2 Related Work and Background

This work is related to two research threads: multi-task
learning and meta-learning. We first summarize the related
work and then give some background. We also discuss the
differences between the existing approaches and our own.

2.1 Multi-Task Learning

Many deep learning approaches require a large number of
training samples and are becoming increasingly complex
(Krizhevsky, Sutskever, and Hinton 2012; Simonyan and
Zisserman 2014; He et al. 2016). However, this requirement

"Ben-David and Borbely (2008) proposed that two tasks were
F-related if the data for both tasks could be generated from a
fixed probability distribution using a set of transformations F. We
constructed the tasks based on the same data distribution, which
was a special case of F-related.

cannot be fulfilled in some applications because (labeled)
samples are hard to collect. MTL is a good solution to this
insufficient data problem when there are multiple related
tasks each of which has limited training samples (Zhang and
Yang 2017).

In MTL, a task 7; is usually accompanied by a training
dataset D, consisting of NV training samples, i.e., Dy =
{xt,yt} Nt , where x! € R% is the ith training instance in
T: and y! is its label. Although more sophisticated methods
now exist, the most common approach is still based on the
joint training of neural network models for multiple tasks
(Caruana 1997), in which a joint model is decomposed into
a feature extractor (shared layers) F that is shared across all
tasks, and task-specific decoder D; for each task. The model
for the tth task is then defined as

yi = Dy(F(x};05);0p,), (1)

where 0y and 6p, are the parameters of F and Dy,
respectively. Then, the goal of the joint model is to find
optimal parameters 6* = ({0p, }1_,, 07) such that
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where L is a suitable loss function. More sophisticated deep
MTL approaches can be characterized by “how to share,”
which specifies concrete ways to share knowledge among
tasks, such as the low-rank approach (Han and Zhang 2016),
task relation learning (Long et al. 2017), and so on. In this
work, we consider a method to take advantage of the benefits
of MTL to improve the STL, where all of the auxiliary tasks
are generated by unsupervised clustering methods. Ideally,
another potential benefit is that all of the MTL techniques
can be used on our models.

2.2 Meta-Learning

Meta-learning was recently proposed and shown to achieve
great performances on various few-shot learning tasks
(Lake, Salakhutdinov, and Tenenbaum 2015). The intuition
of meta-learning can be categorized by learning a matrix
function that embeds data in the same class closer to each
other (Vinyals et al. 2016; Snell, Swersky, and Zemel
2017), learning good weight initializations (Finn, Abbeel,
and Levine 2017), and learning transferable optimizers
(Andrychowicz et al. 2016). In this work, we adopt the idea
from meta-learning for task generalization (Li et al. 2018),
which is a novel variant of MAML for quickly and robustly
adapting the newly constructed tasks to the main task. The
proposed method utilizes a new meta-learning objective on
shared layers that simulates transfer learning by fine-tuning,
i.e., the shared layers are updated to minimize the loss on
the main task based on a few examples and a few gradient
descent steps on auxiliary tasks, while the task-specific
decoders are updated to optimize the corresponding tasks.
Our method can be applied to most deep STL architectures.

3 Meta-MTL with K-means Augmentation

In this work, we propose a novel MTL framework with a k-
means augmentation framework to automatically construct



Hidden Vectors

Input

Convnet

Convnet Output [,

{zi}

P

Y Y N N

—_—

vy

Forward Pass

iple Clustering

Py

Meta Gradient

i
\
|
\
'
: \
|
‘ ¥
-
X Gradient
\
|
\
|
\
'
\
'

Auxiliary Task Auxiliary Task Auxiliary Task Main Task
Decoder 1 Decoder 2 Decoder 3 Decoder ‘
T T T T i Parameter Tying
Shared Shared Shared Shared i
Layers Layers Layers Layers ——— -

Figure 2: Graphical illustration of training process for proposed Meta-MTL with k-means augmentation. The entire training
process is divided into two steps. (a) In the task generation step, we first run an unsupervised embedding learning algorithm to
map the data into the embedding space Z, producing {z;}. Then, we apply k-means T times to obtain 7" auxiliary tasks. (b) In
the meta multi-task learning step, for each episode, one batch of images are sampled to update the task-specific decoders, while
the meta-optimization objective of the shared layers is to minimize the loss on the main task. The blue boxes and arrows are
mainly involved in task-specific learning, and those in purple are mainly involved meta-learning.

auxiliary tasks to improve single task learning, which is
a modification to the basic MTL architecture. By using
a novel meta-learning method for task generalization, the
proposed method can quickly and robustly adapt the newly
constructed tasks to the main task. The entire dataset
construction and training process is illustrated in Figure 2.

3.1 Problem Statement

Assume that the human-specific main task to be learned
is a classic supervised classification task. We have access
to a small labeled dataset D,,,,;» and an unlabeled dataset
D - We expect to use the unsupervised clustering method
on Dg,,, to effectively construct multiple auxiliary tasks
{TYE . If we lack D, it is also feasible to use Dypain
to construct auxiliary tasks. Our goal is to leverage the
MTL framework on the automatically constructed tasks to
improve the single task learning.

Concretely, we adopt a hard parameter sharing frame-
work, which shares the hidden layers between the main
task and all auxiliary tasks to obtain the shared features
h = F(x), while keeping several task-specific decoders to
obtain task-specific outputs y; = D;(h). Given a main task
and T newly constructed auxiliary tasks, the goal of joint
training all of the tasks is to minimize the total loss, similar
to that of the traditional MTL, as follows:

1 Mo T N
0* = argmin — LY, y9) + -— L(yi,y7)),
e NO;(y ¥?) ;Nt;(y )
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where 6 = ({0p, }1_,,05). Dy refers to the output decoder
of the main task, and {D;}7_; refers to the decoders of
T auxiliary tasks. Baxter (1997) showed that the risk of
overfitting the shared parameters is an order 7" smaller than
that of overfitting the task-specific parameters. Thus, when
learning more tasks simultaneously, there is less chance of

overfitting on the main task, which can be verified in Section
4.3. In the next section, we discuss how we can construct
tasks without ground-truth labels. In addition, we introduce
a meta-learning-based MTL to assist in the fast and robust
adaptation for the main task in Section 3.3.

3.2 Automatic Task Generation

We aim to construct multiple classification tasks from the
unlabeled data and then learn how to efficiently utilize MTL
to improve STL. If such tasks are adequately structured
and related, then joint learning these tasks should make it
possible to improve the learning of human-provided main
tasks.

Notice that in the labeled dataset, the labels y can induce
a partition P = {C;}}, over D, by assigning all of the
datapoints with label [ to subset Cj. Then, subsets {C;}~_
make up the entire data set, where L is the number of
types of labels. Similarly, we can reduce the problem of
constructing multiple auxiliary tasks to that of constructing
different partitions over D,,,,.. However, simple partitioning
methods may fail. For example, randomly partitioning the
data shows no consistency between a task’s training data
and test data. Meanwhile, clustering in the pixel-space is
also unappealing because of the poor correlation between
the distances in the pixel-space and the clustering difficulty
caused by the high dimensionality of the raw images (Hsu,
Levine, and Finn 2019). Hence, all thats left is to find
a reasonable alternative to human labels for defining the
partition.

Fortunately, for certain architectures, like autoencoder,
the latent embeddings have been shown to disentangle
important factors of variation in the dataset, which makes
such models useful for representation learning (Berthelot et
al. 2019) and have been used for producing pseudo tasks
with semantic meaning (Hsu, Levine, and Finn 2019). Thus,



we first run an unsupervised embedding learning algorithm
€ on Dy, and then map the data {x;} into the embedding
space Z, producing {z;}. We focus on a standard clustering
algorithm, k-means, which takes a set of vectors as input,
and clusters them into k distinct groups based on a geometric
criterion. To produce a diverse task set, we apply random
scaling to the dimensions of Z or random select half of
the dimensions 7" times to induce 7" different matrices, and
then generate T partitions {P;}7_; by running k-means T
times. More precisely, for a single run of clustering, it jointly
learns a d x k centroid diagonal matrix U and the cluster
assignments y; of each vector z; such that

N
1
P,U = argmin — Z argmin | z; — Uy} ||>, @)
UeRdxk i—1 yl*E{O,l}’““
where yl*le = 1. Through the above function, we can

obtain a set of optimal assignments {y;} and a centroid
matrix U. These assignments are then used as pseudo-labels
to construct the auxiliary task. As a result, the 7" partitions
can correspond to 7" auxiliary tasks.

3.3 Meta-MTL with Newly Constructed Tasks

So far, we have obtained one main task and 7 auxil-
iary tasks. Next, we can directly apply the MTL frame-
work to learn a joint neural classification function y! =
D,(F(x;;05),0p,). However, this can be problematic when
there are some non-ideal clusters, as shown in Figure 1 (c),
which could cause a performance deterioration (Zhang and
Yang 2017). For example, ACAIs pixel-wise reconstruction
loss may prioritize information about the few “features” that
dominate the reconstruction pixel count in complex images,
resulting in clusters that only correspond to a limited range
of factors such as the background color and pose (Hsu,
Levine, and Finn 2019).

Therefore, to further improve the performance, we adopt
a novel meta-learning-based multi-task learning method
to achieve fast and robust task generalization. Instead
of simply joint training D;(F(x;;0x),0p,), our method
provides a way of leveraging the auxiliary tasks for better
generalization on the main task in the MTL phase. More
specifically, our method adopts a traditional hard sharing
parameter structure, which trains each task-specific decoder
D, for its respective task while training the shared layers
F on the auxiliary tasks to generalize to main task. In each
training episode, we first uniformly sample a batch of tasks
T from both the auxiliary tasks and main task {7;}7,,
and conduct gradient descent based on the data from the
sampled tasks 7 to optimize the task-specific decoders 6. .
We simultaneously store the updated weights of shared
layers 0% in preparation for the follow-up meta learning. For
simplification, we use £ to denote the loss function of our
objective function. The update process is as follows:

0p, =0p, — av£DT(9DT)

5
9}:6‘]:—OZV£DT(9]:). ( )

We then treat 6% as an initialized shared weight to optimize
the original shared parameters on the main task based on

Algorithm 1 Meta-MTL with K-means Augmentation

1: Run embedding learning algorithm & on D,,, and
produce embeddings {z;} from observations {x;}.
2: Run k-means on {z;} T times (with random scaling or
random selection on dimensions) to generate a set of
partitions {P; = {C'}*, 1T, which correspond to a
set of auxiliary tasks {7;}7_;.
for episode = 1, M do
Sample batch of tasks 7 ~ {T;}1_,.
for all 7 do
Sample K datapoints Dy = {x;,y,}.
Evaluate Vjy,. and V(;Dt using D based on
Equation 1.
Applying gradient decent to update the parameters
of task-specific decoders 0p..
9: Compute updated parameters §% with gradient
descent based on Equation 5.
10: Sample datapoints Dy = {x;,y;} from 7; for the
meta-update.
11:  end for
12:  Update the parameters of shared layers 6z based on
Equation 6.
13: end for

A

o

the newly sampled datapoints in Dy. The final update on the
shared parameters in each training episode can be written as
follows:

0r =07 — BVOrLp,(0F)
= 9]: — ﬂve}‘ﬁ’po (9]—‘ - O(V;C’DT(G]-‘)),

where both a and 3 are hyper-parameters of the two-stage
learning rate. The above optimization can be conducted
with stochastic gradient descent (SGD). We detail the task
construction and Meta-MTL algorithm in Algorithm 1. In
the meta-train stage, we optimize the task-specific decoders
based on the sampled tasks 7", which ensures that the model
has the ability for each task. Different from decoders, in the
meta-test stage, we only optimize the shared layers based on
the data from the main task, which ensures that the MTL
optimizing direction leads to an improvement on the main
task. In this way, the knowledge learned from D; can provide
a good initial representation that can be effectively fine-
tuned using a few examples in Dy, and thus achieves fast
and robust adaptation for the main task.

(6)

4 Experiments

In this section, we aim to compare the proposed method
with various baseline methods on five benchmarks. To avoid
falsely embellishing the capabilities of our approach by
overfitting to the specific datasets and task types, we did not
perform any architecture engineering: we used architectures
from prior work as-is, or lightly adapted them to our needs
if necessary. We designed the experiments and showed the
superiority in a range of settings: (1) the Meta-MTL can
achieve a significant improvement in a limited training data
setting; (2) the performance of the proposed model can be
further improved when combined with unlabeled data; (3)



Method Acc.

STL (Yang and Hospedales 2016) 65.72
ACAI embedding finetune (Berthelot et al. 2019) 67.91
MTL on all alphabets (Yang and Hospedales 2016) ~ 70.98
MTL + Tasks with random labels, T' = 4 60.98
MTL + Tasks with k-means labels, T = 4 61.26
PTA-F, T' = 4 (Meyerson and Miikkulainen 2018) 70.63
PTA-F, T = 10 (Meyerson and Miikkulainen 2018)  71.52
Meta-MTL, T = 4 72.04
Meta-MTL, T = 10 74.80

Table 1: Accuracy on Omniglot dataset. THe test accuracy
averaged across 50 alphabets is shown.

the proposed method can improve the performance of the
model with data augmentation, and outperforms some semi-
supervised methods; (4) the proposed method can also be
used in challenging recent computer vision benchmarks,
such as CIFIA-100 and minilmageNet. For the sake of
simplicity, we used the same number of k-means clusters as
that of the types of true labels for each dataset. Our code will
be released at https.//github.com/Howardqlz/Meta-MTL.

4.1 Omniglot Character Recognition

The Omniglot dataset (Lake, Salakhutdinov, and Tenenbaum
2015) contains handwritten characters in 50 different alpha-
bets. Each alphabet with its own number of unique charac-
ters (14 ~ 55) induces its own character recognition task. In
total, there are 1,623 unique characters, and each has exactly
20 instances. Here, each task corresponds to an alphabet, and
the goal is to recognize its characters. To reduce variance and
improve the reproducibility of the experiments, we used the
same 50/20/30% train/validation/test split as Meyerson and
Miikkulainen (2018) for each task. Methods were evaluated
with respect to all 50 tasks. The underlying model F
for all the baselines is a simple four layer convolutional
network that has been shown to yield good performance on
Omniglot (Yang and Hospedales 2016). Each of these four
convolutional layers has 53 filters and 3x3 kernels, and is
followed by a 2 x2 maxpooling layer and dropout layer with
a 0.5 dropout probability. Each task-specific decoder D, has
two fully connected layers with 848 and a specific number
of classes of neurons, respectively. In our method, we used
the k-means method on ACAI embeddings (Berthelot et al.
2019) to obtain the auxiliary tasks.

Table 1 reports the average accuracy values across all
50 tasks (alphabets). Our proposed Meta-MTL methods
surpass the STL model by more than 9%. Not all of the
baseline models work well when the training dataset is very
small. Meyerson and Miikkulainen (2018) constructed an
MTL method using duplicates of a single task, but did not
introduce related tasks, which limited the performancez.
In particular, constructing tasks with random labels also
resulted in a huge performance degradation. In contrast,
our method can achieve a significant improvement when

’In Table 1~5, we evaluated six kinds of explicit controls to
PTA trajectories (Meyerson and Miikkulainen 2018). The PTA-F
reported in these tables is the best one.

Method Acc.

STL (Yang and Hospedales 2016) 91.83
ACAI embedding finetune (Berthelot et al. 2019) 93.09
Self-training (Rosenberg, Hebert, and Schneiderman 2005)  92.20
Co-training (Chen, Weinberger, and Blitzer 2011) 91.87
MTL + Tasks with random labels, T' = 4 92.27
MTL + Tasks with k-means labels, 7" = 4 92.86
PTA-F, T' = 4 (Meyerson and Miikkulainen 2018) 92.67
PTA-F, T' = 10 (Meyerson and Miikkulainen 2018) 91.98
Meta-MTL, T =4 93.37
Meta-MTL, T = 10 94.22
Meta-MTL, T = 4} 93.76
Meta-MTL, T' = 10t 94.42

Table 2: Accuracy on MNIST dataset. All of the models
use 1% training data. The models marked with { use the
remaining unlabeled data.

the main task leverages auxiliary tasks constructed by
unsupervised clustering on ACAI embeddings.

4.2 MNIST Number Classification

The MNIST dataset consists of 70,000 hand-drawn exam-
ples of the 10 numerical digits. The previous split used
the original MNIST 60,000/10,000 training/testing split. In
this work, we evaluated the proposed method using only
1% training data, and the remaining data were treated as
unlabeled data. Because it is a simpler task, we used two
layers of the CNN architecture as the shared layer F. The
first convolutional layer has 32 filters of size 5x 5, followed
by 2x2 max pooling. The second convolutional layer has 64
filters of size 4 x4, and again a 2x2 max pooling, as shown
in (Yang and Hospedales 2016).

Table 2 shows the accuracy of the baseline models and our
model on the test dataset of MNIST. Similar to Omniglot,
our method outperforms all of the baseline models when
the training dataset is very small. In particular, when the
number of the auxiliary tasks increases, the performance
of PTA-F drops, but our model performance improves a
lot. In addition, if we used the remaining unlabeled data to
train the embeddings, our method can obtain better results.
The Meta-MTL model also outperforms semi-supervised
methods, such as the self-training and co-training methods
by more than 3%.

To investigate why the proposed method can improve the
STL, we visualized the behaviors of the STL and Meta-
MTL when encountering somewhat ambiguous hand-drawn
examples. We trained Meta-MTL using the same hyperpa-
rameters as the STL, while adding only one auxiliary task
to improve the STL. Some typical examples are shown in
Figure 3. From the figure, we can see that with a small
training dataset, the STL is more likely to confuse some
ambiguous samples, while the auxiliary task can help the
model recognize them. For instance, as shown in the first
row, the STL is confused if this picture is “2” or “8,”
while the auxiliary cluster can give key information that
this image is gathered with many examples of “2.” Then,
the Meta-MTL can correct the STL’s mistakes. In addition,
we also visualized the outputs of the shared layers when
encountering some ambiguous images. We resized the 1,024
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Figure 3: Visualization of behaviors of STL and Meta-MTL. The third and fourth columns are the labels predicted by STL and
Meta-MTL, respectively. We randomly sample 8 images from the k-means cluster which contains the original image shown
in the fifth column. In addition to exhibiting the output matrices of the shared layers, we also compute the Euclidean distance
between the output vectors. The larger Euclidean distance shows stronger capacity to distinguish the ambiguous images.

Acc.
Model CNN | CNNF
STL (Yang and Hospedales 2016) 72.48 | 75.91
ACAI embedding finetune (Berthelot et al. 2019) 64.94 | 64.94
MTL + Tasks with random labels, 7' = 4 70.81 | 74.48
MTL + Tasks with k-means labels T = 4 71.06 | 74.61

PTA-F, T' = 4 (Meyerson and Miikkulainen 2018) 69.20 | 72.54
PTA-F, T = 12 (Meyerson and Miikkulainen 2018) | 68.48 70.96
Meta-MTL, T =4 75.02 | 78.65
Meta-MTL, T' = 12 75.69 | 79.65

Table 3: Accuracy on CIFAR-10 dataset. The models
marked with { apply data augmentation.

dimensional output vectors to the matrices of size 32x32,
and then plotted the largest 200 values in the matrices.
Comparing these pictures, we can observe that the outputs
of the ambiguous images in STL have greater similarity than
those in Meta-MTL. Therefore, the STL is more difficult to
distinguish the ambiguous images. For a clearer comparison,
we computed the Euclidean distance between the ambiguous
images. We can see that our Meta-MTL can more easily
distinguish the two images in the shared layer than STL by
expanding the distance between the ambiguous images.

4.3 CIFAR-10 and CIFAR-100 Tiny Images
Dataset

The CIFAR-10 dataset (Krizhevsky, Hinton, and others
2009) is composed of 10 classes of natural images with
50,000 training images, and 10,000 testing images. Each
image is a RGB image of size 32x32. For this dataset, we
applied the same CNN architecture and decoders as those
in MNIST dataset, while we evaluated our method and all
of the baseline methods using two settings. One setting
was training the model on the original dataset without any
data augmentation method. The other setting was training
on the dataset with some data augmentation techniques,
i.e., randomly performing horizontal flips and gray scale.
Because the labels of the auxiliary tasks were generated
by the whole image, we did not apply the randomly crop
technique on the images.

The results are listed in Table 3. We can see that our
method outperforms the other baseline methods by a large

Acc.
Model 30C [ 100C
STL (Yang and Hospedales 2016) 55.94 | 44.19
ACAI embedding finetune (Berthelot et al. 2019) 44.37 | 34.40
MTL + Tasks with random labels 51.00 | 41.30
MTL + Tasks with k-means labels 51.84 | 42.30

PTA-F, T' = 8 (Meyerson and Miikkulainen 2018) 51.67 | 45.86
PTA-F, T = 20 (Meyerson and Miikkulainen 2018) | 51.69 | 47.43
Meta-MTL, T =8 59.66 | 47.01
Meta-MTL, T' = 20 60.39 | 47.94

Table 4: Accuracy on CIFAR-100 dataset. The “20 C” means
that the 100 classes in the CIFAR-100 are grouped into
20 superclasses, and the “100 C” means the original 100
classes.

margin. In contrast to the PTA-F trained on the Omniglot
and MNIST, when the number of decoders increased, the
performance of this model dropped greatly by more than
4%. The performance of MTL models with random labels
and k-means labels also dropped slightly. In contrast, our
model exceeds the STL by more than 3%. In addition, the
contribution of our model and data augmentation may be
orthogonal, because whether or not the model uses data
augmentation, our methods have similar improvements.

The CIFAR-100 dataset (Krizhevsky, Hinton, and others
2009) is the same in size and format as the CIFAR-10
dataset, but it contains 100 classes. Thus, the number of
images in each class is only one-tenth of the CIFAR-10
dataset. This dataset also provides another label version
that the 100 classes in the CIFAR-100 are grouped into 20
superclasses. We did not tune the hyper-parameters and used
the same setting as the CIFAR-10 dataset. The results are
listed in Table 4. Our Meta-MTL also outperforms the other
baseline models by more than 4% in “20 C” and 3% in “100
C”, respectively.

To verify the effect of our meta-MTL algorithm and k-
means labels, we evaluated the performance of our method
and several baseline methods with different numbers of
auxiliary tasks on the CIFAR-10 dataset. The comparison
of these methods is shown in Figure 4. From the figure,
we can see that our model “K-means Labels + Meta”
achieve a stable and outstanding performance for each
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Figure 4: Comparison of MTL models trained on the
CIFAR-10 datasets with different numbers of tasks.

number of decoders. As the number of decoders increases,
the performance of the model also shows an upward trend.
In contrast, the performance of the models with k-means
or random labels but not using a meta learning algorithm
gradually declines when the number of decoders increases.
Comparing our method with model “K-means Lables”,
we can find that the proposed meta-MTL algorithm can
suppress the impact of error labels and leverage ideal labels
from auxiliary tasks, make the model achieve more than
8% higher accuracy than that without the meta-learning
algorithm. In addition, comparing model "K-means Labels
+ Meta” with "Random Labels + Meta”, we can see that
k-means labels can exhibit semantic meanings, make the
model achieve more than 4% higher accuracy.

4.4 MinilmageNet

In this subsection, we aim to verify the performance of the
proposed method on a more difficult dataset. MinilmageNet
dataset (Ravi and Larochelle 2016), which consists of
100 classes, each with 600 examples of size 84x84. The
images are predominantly natural and realistic. We split the
dataset into training and test sets in a 50,000/10,000 ratio,
then trained and tested these methods using five-fold cross
validation. To evaluate the performance of the proposed
method based on different embedding spaces, we compared
the DeepCluster (Caron et al. 2018) with ACAI (Berthelot
et al. 2019) method to produce embeddings. Moreover, we
applied random scaling and randomly select half dimensions
of the embeddings for the k-means clusters to produce
different partitions. The baseline model is the same as (Finn,
Abbeel, and Levine 2017). The underlying model F is a
simple four layer convolutional network, of which each layer
has 32 filters and 3x3 kernels, and is followed by a 2x2
maxpooling layer. Each task-specific decoder D; has one
fully connected layer with 100 neurons.

The final results are shown in Table 5. The Meta-MTL
model still outperforms all of the baseline models. Com-
paring the model finetuned on the DeepCluster embeddings
with that on the ACAI embeddings, we found that the
DeepCluster model has a much stronger performance than
the ACAL This is because ACAIs pixel-wise reconstruction
loss may prioritize information about the background color
in these complex images, while reducing the focus on the
target objects (Hsu, Levine, and Finn 2019). Hence, the

Embedding Model Acc.

STL 38.98
Random initialization | MTL, Random Labels 36.70
PTA-E T =4 34.93
Embedding finetune 35.14

MTL, k-means, T = 4, | 37.24

DeepCluster MTL, k-means, T = 4,9 | 36.78
Meta-MTL, T = 4, 41.07

Meta-MTL, 7 = 4,9 | 40.86

Embedding finetune 22.90

ACAI MTL, k-means, T' = 4,<> | 37.36

MTL, k-means, T' = 4,0 | 36.98
Meta-MTL, T = 4, 40.43
Meta-MTL, T = 4,0 40.60

Table 5: Accuracy on minilmageNet dataset. The models
marked with > apply the random scaling on the embeddings
to obtain the different tasks, while those marked with &
apply random selection for half of the dimensions on the
embeddings.

Meta-MTL model can achieve better results based on the
clusters obtained by DeepCluster embeddings compared
to those obtained by ACAI embeddings, which further
leads to better performance of Meta-MTL. However, we
could hardly distinguish which method to transform the
embedding space for multiple partitions is better. The
method with random scaling is not always better than
that with random selecting half dimensions of embeddings.
Therefore, both the random scaling and random selecting
methods can produce different effective embeddings to
achieve similar performances.

5 Conclusion

In this work, we proposed the use of an unsupervised
clustering method to construct a variety of auxiliary tasks
to improve single task learning. We found that with simple
k-means clustering mechanisms for partitioning the embed-
ding space, some of the clusters could construct reasonable
related auxiliary tasks. We also proposed a novel meta-
learning-based multi-task learning framework to assist the
fast and robust adaptation for the main task, which can
effectively reduce the influence of the non-ideal clusters.
Because the unsupervised clustering methods can be quickly
implemented on a large scale, we can easily construct a
sufficient number of auxiliary tasks. Experimental results
across five image datasets demonstrated that the proposed
method significantly outperforms the previous methods.
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