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Recently, the emergence of pre-trained models (PTMs)f] has brought natural language processing (NLP) to a new era. In this
survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its
research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,
we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for
future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP

tasks.
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1 Introduction

With the development of deep learning, various neural net-
works have been widely used to solve Natural Language Pro-
cessing (NLP) tasks, such as convolutional neural networks
(CNNs) [1H3]], recurrent neural networks (RNNs) [4}15]], graph-
based neural networks (GNNs) [6-8]] and attention mecha-
nisms [9}[10]. One of the advantages of these neural models
is their ability to alleviate the feature engineering problem.
Non-neural NLP methods usually heavily rely on the discrete
handcrafted features, while neural methods usually use low-
dimensional and dense vectors (aka. distributed representa-
tion) to implicitly represent the syntactic or semantic features
of the language. These representations are learned in specific
NLP tasks. Therefore, neural methods make it easy for people
to develop various NLP systems.

Despite the success of neural models for NLP tasks, the
performance improvement may be less significant compared
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to the Computer Vision (CV) field. The main reason is that
current datasets for most supervised NLP tasks are rather small
(except machine translation). Deep neural networks usually
have a large number of parameters, which make them overfit
on these small training data and do not generalize well in
practice. Therefore, the early neural models for many NLP
tasks were relatively shallow and usually consisted of only
1~3 neural layers.

Recently, substantial work has shown that pre-trained mod-
els (PTMs), on the large corpus can learn universal language
representations, which are beneficial for downstream NLP
tasks and can avoid training a new model from scratch. With
the development of computational power, the emergence of
the deep models (i.e., Transformer [[10]), and the constant
enhancement of training skills, the architecture of PTMs has
been advanced from shallow to deep. The first-generation
PTMs aim to learn good word embeddings. Since these mod-
els themselves are no longer needed by downstream tasks, they

“PTMs are also known as pre-trained language models (PLMs). In this survey, we use PTMs for NLP instead of PLMs to avoid confusion with the narrow

concept of probabilistic (or statistical) language models.
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are usually very shallow for computational efficiencies, such
as Skip-Gram [11] and GloVe [12]]. Although these pre-trained
embeddings can capture semantic meanings of words, they are
context-free and fail to capture higher-level concepts in con-
text, such as polysemous disambiguation, syntactic structures,
semantic roles, anaphora. The second-generation PTMs focus
on learning contextual word embeddings, such as CoVe [13]],
ELMo [14], OpenAl GPT [[15]] and BERT [16]]. These learned
encoders are still needed to represent words in context by
downstream tasks. Besides, various pre-training tasks are also
proposed to learn PTMs for different purposes.

The contributions of this survey can be summarized as
follows:

1. Comprehensive review. We provide a comprehensive
review of PTMs for NLP, including background knowl-
edge, model architecture, pre-training tasks, various
extensions, adaption approaches, and applications.

2. New taxonomy. We propose a taxonomy of PTMs for
NLP, which categorizes existing PTMs from four dif-
ferent perspectives: 1) representation type, 2) model
architecture; 3) type of pre-training task; 4) extensions
for specific types of scenarios.

3. Abundant resources. We collect abundant resources
on PTMs, including open-source implementations of
PTMs, visualization tools, corpora, and paper lists.

4. Future directions. We discuss and analyze the limi-
tations of existing PTMs. Also, we suggest possible
future research directions.

The rest of the survey is organized as follows. Section
outlines the background concepts and commonly used nota-
tions of PTMs. Section [3] gives a brief overview of PTMs
and clarifies the categorization of PTMs. Section ] provides
extensions of PTMs. Section [3]discusses how to transfer the
knowledge of PTMs to downstream tasks. Section [6]gives the
related resources on PTMs. Section[7]presents a collection of
applications across various NLP tasks. Section §]discusses the
current challenges and suggests future directions. Section 9]
summarizes the paper.

2 Background

2.1 Language Representation Learning

As suggested by Bengio et al. [17]], a good representation
should express general-purpose priors that are not task-specific
but would be likely to be useful for a learning machine to solve
Al-tasks. When it comes to language, a good representation
should capture the implicit linguistic rules and common sense
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knowledge hiding in text data, such as lexical meanings, syn-
tactic structures, semantic roles, and even pragmatics.

The core idea of distributed representation is to describe the
meaning of a piece of text by low-dimensional real-valued vec-
tors. And each dimension of the vector has no corresponding
sense, while the whole represents a concrete concept. Figure
[T illustrates the generic neural architecture for NLP. There are
two kinds of word embeddings: non-contextual and contex-
tual embeddings. The difference between them is whether the
embedding for a word dynamically changes according to the
context it appears in.
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Figure 1: Generic Neural Architecture for NLP

Non-contextual Embeddings The first step of represent-
ing language is to map discrete language symbols into a dis-
tributed embedding space. Formally, for each word (or sub-
word) x in a vocabulary V, we map it to a vector e, € RP¢ with
a lookup table E € RPIVI where D, is a hyper-parameter
indicating the dimension of token embeddings. These em-
beddings are trained on task data along with other model
parameters.

There are two main limitations to this kind of embeddings.
The first issue is that the embeddings are static. The embed-
ding for a word does is always the same regardless of its
context. Therefore, these non-contextual embeddings fail to
model polysemous words. The second issue is the out-of-
vocabulary problem. To tackle this problem, character-level
word representations or sub-word representations are widely
used in many NLP tasks, such as CharCNN [[18]], FastText [19]]
and Byte-Pair Encoding (BPE) [20].

Contextual Embeddings To address the issue of polyse-
mous and the context-dependent nature of words, we need
distinguish the semantics of words in different contexts. Given
a text xy, x», -+ , x7 where each token x; € V is a word or
sub-word, the contextual representation of x, depends on the

whole text.

[hl7h27"' ’hT] = fenc(x1»x2"" 7-xT)s (1)

where fenc(+) is neural encoder, which is described in Sec-
tion[2.2] h, is called contextual embedding or dynamical em-
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(c) Fully-Connected Self-Attention Model

Figure 2: Neural Contextual Encoders

bedding of token x; because of the contextual information
included in.

2.2 Neural Contextual Encoders

Most of the neural contextual encoders can be classified into
two categories: sequence models and non-sequence models.
Figure 2] illustrates three representative architectures.

2.2.1 Sequence Models

Sequence models usually capture local context of a word in
sequential order.

Convolutional Models Convolutional models take the em-
beddings of words in the input sentence and capture the mean-
ing of a word by aggregating the local information from its

neighbors by convolution operations [2].

Recurrent Models Recurrent models capture the contextual
representations of words with short memory, such as LSTMs
[21]] and GRUs [22]. In practice, bi-directional LSTMs or
GRUs are used to collect information from both sides of a
word, but its performance is often affected by the long-term

dependency problem.

2.2.2 Non-Sequence Models

Non-sequence models learn the contextual representation with
a pre-defined tree or graph structure between words, such
as the syntactic structure or semantic relation. Some popu-
lar non-sequence models include Recursive NN [6]], TreeL-
STM [7, 23], and GCN [24].

Although the linguistic-aware graph structure can provide
useful inductive bias, how to build a good graph structure is
also a challenging problem. Besides, the structure depends
heavily on expert knowledge or external NLP tools, such as
the dependency parser.

Fully-Connected Self-Attention Model In practice, a
more straightforward way is to use a fully-connected graph
to model the relation of every two words and let the model
learn the structure by itself. Usually, the connection weights
are dynamically computed by the self-attention mechanism,
which implicitly indicates the connection between words. A

successful instance of fully-connected self-attention model is
the Transformer [[10} [25]], which also needs other supplement
modules, such as positional embeddings, layer normalization,
residual connections and position-wise feed-forward network
(FFN) layers.

2.2.3 Analysis

Sequence models learn the contextual representation of the
word with locality bias and are hard to capture the long-range
interactions between words. Nevertheless, sequence models
are usually easy to train and get good results for various NLP
tasks.

In contrast, as an instantiated fully-connected self-attention
model, the Transformer can directly model the dependency
between every two words in a sequence, which is more power-
ful and suitable to model long range dependency of language.
However, due to its heavy structure and less model bias, the
Transformer usually requires a large training corpus and is
easy to overfit on small or modestly-sized datasets [[L5, 26].

Currently, the Transformer has become the mainstream
architecture of PTMs due to its powerful capacity.

2.3 Why Pre-training?

With the development of deep learning, the number of model
parameters has increased rapidly. The much larger dataset is
needed to fully train model parameters and prevent overfit-
ting. However, building large-scale labeled datasets is a great
challenge for most NLP tasks due to the extremely expen-
sive annotation costs, especially for syntax and semantically
related tasks.

In contrast, large-scale unlabeled corpora are relatively easy
to construct. To leverage the huge unlabeled text data, we can
first learn a good representation from them and then use these
representations for other tasks. Recent studies have demon-
strated significant performance gains on many NLP tasks with
the help of the representation extracted from the PTMs on the
large unannotated corpora.

The advantages of pre-training can be summarized as fol-
lows:

1. Pre-training on the huge text corpus can learn universal
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language representations and help with the downstream
tasks.

2. Pre-training provides a better model initialization,
which usually leads to a better generalization perfor-
mance and speeds up convergence on the target task.

3. Pre-training can be regarded as a kind of regularization
to avoid overfitting on small data [27].

2.4 A Brief History of PTMs for NLP

Pre-training has always been an effective strategy to learn the
parameters of deep neural networks, which are then fine-tuned
on downstream tasks. As early as 2006, the breakthrough
of deep learning came with greedy layer-wise unsupervised
pre-training followed by supervised fine-tuning [28]. In CV, it
has been in practice to pre-train models on the huge ImageNet
corpus, and then fine-tune further on smaller data for different
tasks. This is much better than a random initialization because
the model learns general image features, which can then be
used in various vision tasks.

In NLP, PTMs on large corpus have also been proved to be
beneficial for the downstream NLP tasks, from the shallow
word embedding to deep neural models.

2.4.1 First-Generation PTMs: Pre-trained Word Embeddings

Representing words as dense vectors has a long history [29].
The “modern” word embedding is introduced in pioneer work
of neural network language model (NNLM) [30]. Collobert
et al. [31] showed that the pre-trained word embedding on the
unlabelled data could significantly improve many NLP tasks.
To address the computational complexity, they learned word
embeddings with pairwise ranking task instead of language
modeling. Their work is the first attempt to obtain generic
word embeddings useful for other tasks from unlabeled data.
Mikolov et al. [[L1] showed that there is no need for deep
neural networks to build good word embeddings. They pro-
pose two shallow architectures: Continuous Bag-of-Words
(CBOW) and Skip-Gram (SG) models. Despite their sim-
plicity, they can still learn high-quality word embeddings to
capture the latent syntactic and semantic similarities among
words. Word2vec is one of the most popular implementations
of these models and makes the pre-trained word embeddings
accessible for different tasks in NLP. Besides, GloVe [12]
is also a widely-used model for obtaining pre-trained word
embeddings, which are computed by global word-word co-
occurrence statistics from a large corpus.

Although pre-trained word embeddings have been shown ef-
fective in NLP tasks, they are context-independent and mostly
trained by shallow models. When used on a downstream task,
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the rest of the whole model still needs to be learned from
scratch.

During the same time period, many researchers also try to
learn embeddings of paragraph, sentence or document, such
as paragraph vector [32], Skip-thought vectors [33]], Con-
text2Vec [34]. Different from their modern successors, these
sentence embedding models try to encode input sentences
into a fixed-dimensional vector representation, rather than the
contextual representation for each token.

2.4.2 Second-Generation PTMs: Pre-trained Contextual En-
coders

Since most NLP tasks are beyond word-level, it is natural to
pre-train the neural encoders on sentence-level or higher. The
output vectors of neural encoders are also called contextual
word embeddings since they represent the word semantics
depending on its context.

Dai and Le [35] proposed the first successful instance of
PTM for NLP. They initialized LSTMs with a language model
(LM) or a sequence autoencoder, and found the pre-training
can improve the training and generalization of LSTMSs in many
text classification tasks. Liu et al. [5] pre-trained a shared
LSTM encoder with LM and fine-tuned it under the multi-task
learning (MTL) framework. They found the pre-training and
fine-tuning can further improve the performance of MTL for
several text classification tasks. Ramachandran et al. [36]]
found the Seq2Seq models can be significantly improved by
unsupervised pre-training. The weights of both encoder and
decoder are initialized with pre-trained weights of two lan-
guage models and then fine-tuned with labeled data. Besides
pre-training the contextual encoder with LM, McCann et al.
[13] pre-trained a deep LSTM encoder from an attentional
sequence-to-sequence model with machine translation (MT).
The context vectors (CoVe) output by the pre-trained encoder
can improve the performance of a wide variety of common
NLP tasks.

Since these precursor PTMs, the modern PTMs are usually
trained with larger scale corpora, more powerful or deeper
architectures (e.g., Transformer), and new pre-training tasks.

Peters et al. [14] pre-trained 2-layer LSTM encoder with
a bidirectional language model (BiLM), consisting of a for-
ward LM and a backward LM. The contextual representations
output by the pre-trained BiLM, ELMo (Embeddings from
Language Models), are shown to bring large improvements
on a broad range of NLP tasks. Akbik et al. [37] captured
word meaning with contextual string embeddings pre-trained
with character-level LM. However, these two PTMs are usu-
ally used as a feature extractor to produce the contextual
word embeddings, which are fed into the main model for
downstream tasks. Their parameters are fixed, and the rest
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parameters of the main model are still trained from scratch.
ULMFiT (Universal Language Model Fine-tuning) [38]] at-
tempted to fine-tune pre-trained LM for text classification
(TC) and achieved state-of-the-art results on six widely-used
TC datasets. ULMFiT consists of 3 phases: 1) pre-training
LM on general-domain data; 2) fine-tuning LM on target data;
3) fine-tuning on the target task. ULMFiT also investigates
some effective fine-tuning strategies, including discrimina-
tive fine-tuning, slanted triangular learning rates, and gradual
unfreezing.

More recently, the very deep PTMs have shown their pow-
erful ability in learning universal language representations:
e.g., OpenAl GPT (Generative Pre-training) [15]] and BERT
(Bidirectional Encoder Representation from Transformer) [16].
Besides LM, an increasing number of self-supervised tasks
(see Section [3.1) is proposed to make the PTMs capturing
more knowledge form large scale text corpora.

Since ULMFIT and BERT, fine-tuning has become the
mainstream approach to adapt PTMs for the downstream tasks.

3 Overview of PTMs

The major differences between PTMs are the usages of con-
textual encoders, pre-training tasks, and purposes. We have
briefly introduced the architectures of contextual encoders in
Section @} In this section, we focus on the description of
pre-training tasks and give a taxonomy of PTMs.

3.1 Pre-training Tasks

The pre-training tasks are crucial for learning the universal
representation of language. Usually, these pre-training tasks
should be challenging and have substantial training data. In
this section, we summarize the pre-training tasks into three
categories: supervised learning, unsupervised learning, and
self-supervised learning.

1. Supervised learning (SL) is to learn a function that maps
an input to an output based on training data consisting
of input-output pairs.

2. Unsupervised learning (UL) is to find some intrinsic
knowledge from unlabeled data, such as clusters, densi-
ties, latent representations.

3. Self-Supervised learning (SSL) is a blend of supervised
learning and unsupervised learninﬂ The learning
paradigm of SSL is entirely the same as supervised
learning, but the labels of training data are generated
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automatically. The key idea of SSL is to predict any part
of the input from other parts in some form. For example,
the masked language model (MLM) is a self-supervised
task that attempts to predict the masked words in a
sentence given the rest words.

In CV, many PTMs are trained on large supervised training
sets like ImageNet. However, in NLP, the datasets of most
supervised tasks are not large enough to train a good PTM.
The only exception is machine translation (MT). A large-scale
MT dataset, WMT 2017, consists of more than 7 million sen-
tence pairs. Besides, MT is one of the most challenging tasks
in NLP, and an encoder pre-trained on MT can benefit a va-
riety of downstream NLP tasks. As a successful PTM, CoVe
[13]] is an encoder pre-trained on MT task and improves a
wide variety of common NLP tasks: sentiment analysis (SST,
IMDb), question classification (TREC), entailment (SNLI),
and question answering (SQuAD).

In this section, we introduce some widely-used pre-training
tasks in existing PTMs. We can regard these tasks as self-
supervised learning. Table[I]also summarizes their loss func-
tions.

3.1.1 Language Modeling (LM)

The most common unsupervised task in NLP is probabilistic
language modeling (LM), which is a classic probabilistic den-
sity estimation problem. Although LM is a general concept,
in practice, LM often refers in particular to auto-regressive
LM or unidirectional LM.

Given a text sequence X,.r = [xy, X2, - , x7], its joint prob-
ability p(x;.r) can be decomposed as

T
pxir) = [ | pllxos), @)
t=1

where X is special token indicating the begin of sequence.

The conditional probability p(x;|Xo..—;) can be modeled by
a probability distribution over the vocabulary given linguistic
context X.,.—. The context X, is modeled by neural encoder
Jenc(+), and the conditional probability is

P(Xi|X0:4-1) = gLM(fenc(XO:r—O), 3)

where gy m(+) is prediction layer.

Given a huge corpus, we can train the entire network with
maximum likelihood estimation (MLE).

A drawback of unidirectional LM is that the representa-
tion of each token encodes only the leftward context tokens
and itself. However, better contextual representations of text
should encode contextual information from both directions.

1) Indeed, it is hard to clearly distinguish the unsupervised learning and self-supervised learning. For clarification, we refer “unsupervised learning” to the
learning without human-annotated supervised labels. The purpose of “self-supervised learning” is to learn the general knowledge from data rather than standard

unsupervised objectives, such as density estimation.
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Table 1: Loss Functions of Pre-training Tasks

Task Loss Function Description
T
LM Lim=- Z log p(xilX<() X<t = X1, X250 5 X1+
=1
MLM Lyvim = - Z log p(fclx\,,l(x)) m(x) and X\ (x) denote the masked words from x and the rest

xem(x)

words respectively.

J
Lsosmm = — Z log p(xllx\x,-;/axi:l—])

Seq2Seq MLM X;;j denotes an masked n-gram span from i to j in x.
= =1
PLM Lon =~ Z log p(zilz<;) z = perm(X) is a permutation of x with random order.
=1
T
DAE Loae = — Z log p(x:|R, X<s) % is randomly perturbed text from x.
t=1
DIM Lo = sRi:j, Xi:j) — log Z SR, Xii ) x;.; denotes an n-gram span from i to j in x, X;; denotes a
X;.jeEN sentence masked at position i to j, and X;.; denotes a randomly-
sampled negative n-gram from corpus.
NSP/SOP Lspisor = — log p(tIx,y) t = 1 if x and y are continuous segments from corpus.
T
RTD Lro = - Z log p(y:I%) yr = 1(& = x,), X is corrupted from x.
=1
'x= [x1,x2,- -, x7] denotes a sequence.

An improved solution is bidirectional LM (BiLM), which con-
sists of two unidirectional LMs: a forward left-to-right LM
and a backward right-to-left LM. For BiLM, Baevski et al.
[39] proposed a two-tower model that the forward tower oper-
ates the left-to-right LM and the backward tower operates the
right-to-left LM.

3.1.2 Masked Language Modeling (MLM)

Masked language modeling (MLM) is first proposed by Tay-
lor [40] in the literature, who referred to this as a Cloze task.
Devlin et al. [16] adapted this task as a novel pre-training task
to overcome the drawback of the standard unidirectional LM.
Loosely speaking, MLM first masks out some tokens from the
input sentences and then trains the model to predict the masked
tokens by the rest of the tokens. However, this pre-training
method will create a mismatch between the pre-training phase
and the fine-tuning phase because the mask token does not
appear during the fine-tuning phase. Empirically, to deal with
this issue, Devlin et al. [[16] used a special [MASK] token 80%
of the time, a random token 10% of the time and the original
token 10% of the time to perform masking.

Sequence-to-Sequence MLM (Seq2Seq MLM) MLM is
usually solved as classification problem. We feed the masked
sequences to a neural encoder whose output vectors are fur-
ther fed into a softmax classifier to predict the masked token.
Alternatively, we can use encoder-decoder (aka. sequence-to-
sequence) architecture for MLM, in which the encoder is fed
a masked sequence, and the decoder sequentially produces
the masked tokens in auto-regression fashion. We refer to
this kind of MLM as sequence-to-sequence MLM (Seq2Seq

MLM), which is used in MASS [41] and TS5 [42]]. Seq2Seq
MLM can benefit the Seq2Seq-style downstream tasks, such
as question answering, summarization, and machine transla-
tion.

Enhanced Masked Language Modeling (E-MLM) Con-
currently, there are multiple research proposing different en-
hanced versions of MLM to further improve on BERT. Instead
of static masking, RoOBERTa [43]] improves BERT by dynamic
masking.

UniLLM [44], 45]] extends the task of mask prediction on
three types of language modeling tasks: unidirectional, bidi-
rectional, and sequence-to-sequence prediction. XLM [46]
performs MLM on a concatenation of parallel bilingual sen-
tence pairs, called Translation Language Modeling (TLM).
SpanBERT [47] replaces MLM with Random Contiguous
Words Masking and Span Boundary Objective (SBO) to inte-
grate structure information into pre-training, which requires
the system to predict masked spans based on span bound-
aries. Besides, StructBERT [48]] introduces the Span Order
Recovery task to further incorporate language structures.

Another way to enrich MLM is to incorporate external
knowledge (see Section [.).

3.1.3 Permuted Language Modeling (PLM)

Despite the wide use of the MLM task in pre-training, Yang
et al. [49]] claimed that some special tokens used in the pre-
training of MLM, like [MASK], are absent when the model is
applied on downstream tasks, leading to a gap between pre-
training and fine-tuning. To overcome this issue, Permuted
Language Modeling (PLM) [49] is a pre-training objective
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to replace MLM. In short, PLM is a language modeling task
on a random permutation of input sequences. A permutation
is randomly sampled from all possible permutations. Then
some of the tokens in the permuted sequence are chosen as
the target, and the model is trained to predict these targets,
depending on the rest of the tokens and the natural positions of
targets. Note that this permutation does not affect the natural
positions of sequences and only defines the order of token pre-
dictions. In practice, only the last few tokens in the permuted
sequences are predicted, due to the slow convergence. And a
special two-stream self-attention is introduced for target-aware
representations.

3.1.4 Denoising Autoencoder (DAE)

Denoising autoencoder (DAE) takes a partially corrupted input
and aims to recover the original undistorted input. Specific to
language, a sequence-to-sequence model, such as the standard
Transformer, is used to reconstruct the original text. There are
several ways to corrupt text [S0]:

(1) Token Masking: Randomly sampling tokens from the
input and replacing them with [MASK] elements.

(2) Token Deletion: Randomly deleting tokens from the in-
put. Different from token masking, the model needs to decide
the positions of missing inputs.

(3) Text Infilling: Like SpanBERT, a number of text spans
are sampled and replaced with a single [MASK] token. Each
span length is drawn from a Poisson distribution (4 = 3). The
model needs to predict how many tokens are missing from a
span.

(4) Sentence Permutation: Dividing a document into sen-
tences based on full stops and shuffling these sentences in
random order.

(5) Document Rotation: Selecting a token uniformly at
random and rotating the document so that it begins with that
token. The model needs to identify the real start position of
the document.

3.1.5 Contrastive Learning (CTL)

Contrastive learning [S1]] assumes some observed pairs of text
that are more semantically similar than randomly sampled
text. A score function s(x, y) for text pair (x, y) is learned to
minimize the objective function:

exp (s(x, y) ] @)

Lo = Ex,yty*[ — log exp (s(x,y*)) + exp (s(x,y7))

where (x, y") are a similar pair and y~ is presumably dissimi-
lar to x. y* and y~ are typically called positive and negative
sample. The score function s(x,y) is often computed by a
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learnable neural encoder in two ways: s(x,y) = f;nc(x)ﬂncm or
5(X,¥) = fene(x @ ).

The idea behind CTL is “learning by comparison”. Com-
pared to LM, CTL usually has less computational complex-
ity and therefore is desirable alternative training criteria for
PTMs.

Collobert et al. [31] proposed pairwise ranking task to dis-
tinguish real and fake phrases. The model needs to predict
a higher score for a legal phrase than an incorrect phrase
obtained by replacing its central word with a random word.
Mnih and Kavukcuoglu [52] trained word embeddings effi-
ciently with Noise-Contrastive Estimation (NCE) [53]], which
trains a binary classifier to distinguish real and fake samples.
The idea of NCE is also used in the well-known word2vec
embedding [[11]].

We briefly describe some recently proposed CTL tasks in
the following paragraphs.

Deep InfoMax (DIM) Deep InfoMax (DIM) [54] is origi-
nally proposed for images, which improves the quality of the
representation by maximizing the mutual information between
an image representation and local regions of the image.

Kong et al. [S5] applied DIM to language representation
learning. The global representation of a sequence x is defined
to be the hidden state of the first token (assumed to be a spe-
cial start of sentence symbol) output by contextual encoder
Jenc(X). The objective of DIM is to assign a higher score for
fenc(xi:j)Tf;:nc(ﬁi:j) than f;:nc(ii:j)Tfenc(ﬁi:j)’ where Xi:j denotes
an n-grarrﬂ span from i to j in X, X;;; denotes a sentence
masked at position i to j, and X;.; denotes a randomly-sampled
negative n-gram from corpus.

Replaced Token Detection (RTD) Replaced Token Detec-
tion (RTD) is the same as NCE but predicts whether a token
is replaced given its surrounding context.

CBOW with negative sampling (CBOW-NS) [[11]] can be
viewed as a simple version of RTD, in which the negative
samples are randomly sampled from vocabulary with simple
proposal distribution.

ELECTRA [56] improves RTD by utilizing a generator to
replacing some tokens of a sequence. A generator G and a dis-
criminator D are trained following a two-stage procedure: (1)
Train only the generator with MLM task for n; steps; (2) Ini-
tialize the weights of the discriminator with the weights of the
generator. Then train the discriminator with a discriminative
task for n, steps, keeping G frozen. Here the discriminative
task indicates justifying whether the input token has been re-
placed by G or not. The generator is thrown after pre-training,
and only the discriminator will be fine-tuned on downstream
tasks.

2) n is drawn from a Gaussian distribution N(5, 1) clipped at 1 (minimum length) and 10 (maximum length).
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RTD is also an alternative solution for the mismatch prob-
lem. The network sees [MASK] during pre-training but not
when being fine-tuned in downstream tasks.

Similarly, WKLM [57] replaces words on the entity-level
instead of token-level. Concretely, WKLM replaces entity
mentions with names of other entities of the same type and
train the models to distinguish whether the entity has been
replaced.

Next Sentence Prediction (NSP) Punctuations are the nat-
ural separators of text data. So, it is reasonable to construct
pre-training methods by utilizing them. Next Sentence Predic-
tion (NSP) [I16] is just a great example of this. As its name
suggests, NSP trains the model to distinguish whether two
input sentences are continuous segments from the training cor-
pus. Specifically, when choosing the sentences pair for each
pre-training example, 50% of the time, the second sentence
is the actual next sentence of the first one, and 50% of the
time, it is a random sentence from the corpus. By doing so, it
is capable to teach the model to understand the relationship
between two input sentences and thus benefit downstream
tasks that are sensitive to this information, such as Question
Answering and Natural Language Inference.

However, the necessity of the NSP task has been questioned
by subsequent work [47} 49, 43| 163]. Yang et al. [49] found
the impact of the NSP task unreliable, while Joshi et al. [47]
found that single-sentence training without the NSP loss is
superior to sentence-pair training with the NSP loss. More-
over, Liu et al. [43] conducted a further analysis for the NSP
task, which shows that when training with blocks of text from
a single document, removing the NSP loss matches or slightly
improves performance on downstream tasks.

Sentence Order Prediction (SOP) To better model inter-
sentence coherence, ALBERT [63]] replaces the NSP loss with
a sentence order prediction (SOP) loss. As conjectured in
Lan et al. [63], NSP conflates topic prediction and coherence
prediction in a single task. Thus, the model is allowed to make
predictions merely rely on the easier task, topic prediction.
Different from NSP, SOP uses two consecutive segments from
the same document as positive examples, and the same two
consecutive segments but with their order swapped as negative
examples. As a result, ALBERT consistently outperforms
BERT on various downstream tasks.

StructBERT [48]] and BERTje [88]] also take SOP as their
self-supervised learning task.

3.1.6 Others

Apart from the above tasks, there are many other auxiliary
pre-training tasks designated to incorporate factual knowledge
(see Sectioni. 1)), improve cross-lingual tasks (see Sectionf4.2)),
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multi-modal applications (see Section[d.3)), or other specific
tasks (see Section [{.4)).

3.2 Taxonomy of PTMs

To clarify the relations of existing PTMs for NLP, we build the
taxonomy of PTMs, which categorizes existing PTMs from
four different perspectives:

1. Representation Type: According to the representation
used for downstream tasks, we can divide PTMs into
non-contextual and contextual models.

2. Architectures: The backbone network used by PTMs,
including LSTM, Transformer encoder, Transformer
decoder, and the full Transformer architecture. “Trans-
former” means the standard encoder-decoder architec-
ture. “Transformer encoder” and “Transformer decoder”
mean the encoder and decoder part of the standard
Transformer architecture, respectively. Their difference
is that the decoder part uses masked self-attention with
a triangular matrix to prevent tokens from attending
their future (right) positions.

3. Pre-Training Task Types: The type of pre-training tasks
used by PTMs. We have discussed them in Section 3.1}

4. Extensions: PTMs designed for various scenarios, in-
cluding knowledge-enriched PTMs, multilingual or
language-specific PTMs, multi-model PTMs, domain-
specific PTMs and compressed PTMs. We will particu-
larly introduce these extensions in Section ]

Figure 3| shows the taxonomy as well as some correspond-
ing representative PTMs. Besides, Table [2| distinguishes some
representative PTMs in more detail.

3.3 Model Analysis

Due to the great success of PTMs, it is important to understand
what kinds of knowledge are captured by them, and how to in-
duce knowledge from them. There is a wide range of literature
analyzing linguistic knowledge and world knowledge stored
in pre-trained non-contextual and contextual embeddings.

3.3.1 Non-Contextual Embeddings

Static word embeddings are first probed for kinds of knowl-
edge. Mikolov et al. [117] found that word representa-
tions learned by neural network language models are able
to capture linguistic regularities in language, and the rela-
tionship between words can be characterized by a relation-
specific vector offset. Further analogy experiments [[11]

demonstrated that word vectors produced by skip-gram model
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Figure 3: Taxonomy of PTMs with Representative Examples
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Table 2: List of Representative PTMs
PTMs Architecture Input Pre-Training Task Corpus Params GLUE* FT%
ELMo [14] LSTM Text BiLM WikiText-103 No
GPT [15] Transformer Dec.  Text LM BookCorpus 117M 72.8 Yes
GPT-2 [58] Transformer Dec.  Text LM WebText 117M ~ 1542M No
BERT [16] Transformer Enc.  Text MLM & NSP WikiEn+BookCorpus 110M ~ 340M 81.9*  Yes
InfoWord [55] Transformer Enc.  Text DIM+MLM WikiEn+BookCorpus =BERT 81.1"  Yes
RoBERTa [43] Transformer Enc.  Text MLM BookCorpus+CC- 355M 88.5 Yes
News+OpenWebText+ STORIES
XLNet [49] Two-Stream Text PLM WikiEn+ BookCorpus+Giga5 ~BERT 90.5%  Yes
Transformer Enc. +ClueWeb+Common Crawl
ELECTRA [56] Transformer Enc.  Text RTD+MLM same to XLNet 335M 88.6 Yes
UnilLM [44] Transformer Enc.  Text MLM$% NSP WikiEn+BookCorpus 340M 80.8 Yes
MASS [41] Transformer Text Seq2Seq MLM *Task-dependent Yes
BART [50] Transformer Text DAE same to RoOBERTa 110% of BERT 88.4*  Yes
T5 [42] Transformer Text Seq2Seq MLM Colossal Clean Crawled Corpus (C4) 220M ~ 11B 89.7  Yes
ERNIE(THU) [76] | Transformer Enc.  Text+Entities MLM+NSP+dEA WikiEn + Wikidata 114M 79.6 Yes
KnowBERT [77] Transformer Enc.  Text MLM+NSP+EL WikiEn + WordNet/Wiki 253M ~ 523M Yes
K-BERT [78] Transformer Enc.  Text+Triples MLM+NSP WikiZh + WebtextZh + CN-DBpedia + =BERT Yes
HowNet + MedicalKG
KEPLER [80] Transformer Enc.  Text MLM+KE WikiEn + Wikidata/WordNet Yes
WKLM [57] Transformer Enc.  Text MLM+ERD WikiEn + Wikidata =BERT Yes
CoLAKE [81] Transformer Enc. ~ Text+Triples MLM WikiEn + Wikidata =RoBERTa 86.3 Yes

 “Transformer Enc.” and “Transformer Dec.” mean the encoder and decoder part of the standard Transformer architecture respectively. Their difference is that the
decoder part uses masked self-attention with triangular matrix to prevent tokens from attending their future (right) positions. “Transformer” means the standard

encoder-decoder architecture.
¥ the averaged score on 9 tasks of GLUE benchmark (see Seclion‘
* without WNLI task.
% indicates ensemble result.
# means whether is model usually used in fine-tuning fashion.

¢ The MLM of UniLM is built on three versions of LMs: Unidirectional LM, Bidirectional LM, and Sequence-to-Sequence LM.

can capture both syntactic and semantic word relationships,
such as vec(“China”) — vec(“Beijing”) ~ vec(“Japan”) —
vec(“Tokyo”). Besides, they find compositionality property of
word vectors, for example, vec(“Germany”) + vec(*“‘capital”)
is close to vec(“Berlin”). Inspired by these work, Rubin-
stein et al. [118]] found that distributional word representations
are good at predicting taxonomic properties (e.g., dog is an
animal) but fail to learn attributive properties (e.g., swan is
white). Similarly, Gupta et al. [119] showed that word2vec
embeddings implicitly encode referential attributes of entities.
The distributed word vectors, along with a simple supervised
model, can learn to predict numeric and binary attributes of
entities with a reasonable degree of accuracy.

3.3.2 Contextual Embeddings

A large number of studies have probed and induced different
types of knowledge in contextual embeddings. In general,
there are two types of knowledge: linguistic knowledge and
world knowledge.

Linguistic Knowledge A wide range of probing tasks are
designed to investigate the linguistic knowledge in PTMs. Ten-
ney et al. [120], Liu et al. [121] found that BERT performs
well on many syntactic tasks such as part-of-speech tagging
and constituent labeling. However, BERT is not good enough

at semantic and fine-grained syntactic tasks, compared with
simple syntactic tasks.

Besides, Tenney et al. [122] analyzed the roles of BERT’s
layers in different tasks and found that BERT solves tasks in a
similar order to that in NLP pipelines. Furthermore, knowl-
edge of subject-verb agreement [123]] and semantic roles [124]
are also confirmed to exist in BERT. Besides, Hewitt and Man-
ning [123]], Jawahar et al. [126], Kim et al. [127] proposed
several methods to extract dependency trees and constituency
trees from BERT, which proved the BERT’s ability to encode
syntax structure. Reif et al. [128]] explored the geometry of
internal representations in BERT and find some evidence: 1)
linguistic features seem to be represented in separate semantic
and syntactic subspaces; 2) attention matrices contain gram-
matical representations; 3) BERT distinguishes word senses
at a very fine level.

World Knowledge Besides linguistic knowledge, PTMs
may also store world knowledge presented in the training
data. A straightforward method of probing world knowledge
is to query BERT with “fill-in-the-blank™ cloze statements, for
example, “Dante was born in [MASK]”. Petroni et al. [129]
constructed LAMA (Language Model Analysis) task by manu-
ally creating single-token cloze statements (queries) from sev-
eral knowledge sources. Their experiments show that BERT
contains world knowledge competitive with traditional infor-



QIU XP, et al.

mation extraction methods. Since the simplicity of query
generation procedure in LAMA, Jiang et al. [130] argued that
LAMA just measures a lower bound for what language models
know and propose more advanced methods to generate more
efficient queries. Despite the surprising findings of LAMA, it
has also been questioned by subsequent work [[1311[132]]. Sim-
ilarly, several studies induce relational knowledge [[133]] and
commonsense knowledge [[134] from BERT for downstream
tasks.

4 Extensions of PTMs

4.1 Knowledge-Enriched PTMs

PTMs usually learn universal language representation from
general-purpose large-scale text corpora but lack domain-
specific knowledge. Incorporating domain knowledge from
external knowledge bases into PTM has been shown to be
effective. The external knowledge ranges from linguistic [135}
79.,177,[136]), semantic [137], commonsense [[138]], factual [[76-
78,157, 180]], to domain-specific knowledge [139] [78]].

On the one hand, external knowledge can be injected dur-
ing pre-training. Early studies [140H143] focused on learning
knowledge graph embeddings and word embedding jointly.
Since BERT, some auxiliary pre-training tasks are designed
to incorporate external knowledge into deep PTMs. LIB-
ERT [1335] (linguistically-informed BERT) incorporates lin-
guistic knowledge via an additional linguistic constraint task.
Ke et al. [79] integrated sentiment polarity of each word to
extend the MLM to Label-Aware MLM (LA-MLM). As a re-
sult, their proposed model, SentiLR, achieves state-of-the-art
performance on several sentence- and aspect-level sentiment
classification tasks. Levine et al. [137]] proposed SenseBERT,
which is pre-trained to predict not only the masked tokens but
also their supersenses in WordNet. ERNIE(THU) [76] inte-
grates entity embeddings pre-trained on a knowledge graph
with corresponding entity mentions in the text to enhance the
text representation. Similarly, KnowBERT [/7] trains BERT
jointly with an entity linking model to incorporate entity repre-
sentation in an end-to-end fashion. Wang et al. [80] proposed
KEPLER, which jointly optimizes knowledge embedding and
language modeling objectives. These work inject structure
information of knowledge graph via entity embedding. In con-
trast, K-BERT [[78]] explicitly injects related triples extracted
from KG into the sentence to obtain an extended tree-form
input for BERT. CoLAKE [81] integrates knowledge context
and language context into a unified graph, which is then pre-
trained with MLM to obtain contextualized representation for
both knowledge and language. Moreover, Xiong et al. [S7]

3) https://github.com/google-research/bert/blob/master/multilingual.md
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adopted entity replacement identification to encourage the
model to be more aware of factual knowledge. However, most
of these methods update the parameters of PTMs when inject-
ing knowledge, which may suffer from catastrophic forgetting
when injecting multiple kinds of knowledge. To address this,
K-Adapter [136] injects multiple kinds of knowledge by train-
ing different adapters independently for different pre-training
tasks, which allows continual knowledge infusion.

On the other hand, one can incorporate external knowledge
into pre-trained models without retraining them from scratch.
As an example, K-BERT [[78]] allows injecting factual knowl-
edge during fine-tuning on downstream tasks. Guan et al.
[138]] employed commonsense knowledge bases, ConceptNet
and ATOMIC, to enhance GPT-2 for story generation. Yang
et al. [144] proposed a knowledge-text fusion model to acquire
related linguistic and factual knowledge for machine reading
comprehension.

Besides, Logan IV et al. [[1435]] and Hayashi et al. [[146] ex-
tended language model to knowledge graph language model
(KGLM) and latent relation language model (LRLM) respec-
tively, both of which allow prediction conditioned on knowl-
edge graph. These novel KG-conditioned language models
show potential for pre-training.

4.2 Multilingual and Language-Specific PTMs
4.2.1 Multilingual PTMs

Learning multilingual text representations shared across lan-
guages plays an important role in many cross-lingual NLP
tasks.

Cross-Lingual Language Understanding (XLU) Most of
the early works focus on learning multilingual word em-
bedding [147-149], which represents text from multiple lan-
guages in a single semantic space. However, these methods
usually need (weak) alignment between languages.

Multilingual BERTF_FI (mBERT) is pre-trained by MLM with
the shared vocabulary and weights on Wikipedia text from the
top 104 languages. Each training sample is a monolingual doc-
ument, and there are no cross-lingual objectives specifically
designed nor any cross-lingual data. Even so, mBERT per-
forms cross-lingual generalization surprisingly well [150]. K
et al. [151]] showed that the lexical overlap between languages
plays a negligible role in cross-lingual success.

XLM [46] improves mBERT by incorporating a cross-
lingual task, translation language modeling (TLM), which
performs MLM on a concatenation of parallel bilingual sen-
tence pairs. Unicoder [82] further propose three new cross-
lingual pre-training tasks, including cross-lingual word recov-
ery, cross-lingual paraphrase classification and cross-lingual
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masked language model (XMLM).

XLM-RoBERTa (XLM-R) [62] is a scaled multilingual
encoder pre-trained on a significantly increased amount of
training data, 2.5TB clean CommonCrawl data in 100 differ-
ent languages. The pre-training task of XLM-RoBERTa is
monolingual MLM only. XLLM-R achieves state-of-the-arts
results on multiple cross-lingual benchmarks, including XNLI,
MLQA, and NER.

Cross-Lingual Language Generation (XLG) Multilin-
gual generation is a kind of tasks to generate text with different
languages from the input language, such as machine transla-
tion and cross-lingual abstractive summarization.

Different from the PTMs for multilingual classification, the
PTMs for multilingual generation usually needs to pre-train
both the encoder and decoder jointly, rather than only focusing
on the encoder.

MASS [41] pre-trains a Seq2Seq model with monolingual
Seq2Seq MLM on multiple languages and achieves significant
improvement for unsupervised NMT. XNLG [60] performs
two-stage pre-training for cross-lingual natural language gen-
eration. The first stage pre-trains the encoder with monolin-
gual MLM and Cross-Lingual MLM (XMLM) tasks. The
second stage pre-trains the decoder by using monolingual
DAE and Cross-Lingual Auto-Encoding (XAE) tasks while
keeping the encoder fixed. Experiments show the benefit of
XNLG on cross-lingual question generation and cross-lingual
abstractive summarization. mBART [61]], a multilingual exten-
sion of BART [50], pre-trains the encoder and decoder jointly
with Seq2Seq denoising auto-encoder (DAE) task on large-
scale monolingual corpora across 25 languages. Experiments
demonstrate that mBART produces significant performance
gains across a wide variety of machine translation (MT) tasks.

4.2.2 Language-Specific PTMs

Although multilingual PTMs perform well on many languages,
recent work showed that PTMs trained on a single language
significantly outperform the multilingual results [[89] 90} [152].

For Chinese, which does not have explicit word bound-
aries, modeling larger granularity (85, [87, [86] and multi-
granularity [84}[153] word representations have shown great
success. Kuratov and Arkhipov [154]] used transfer learn-
ing techniques to adapt a multilingual PTM to a monolin-
gual PTM for Russian language. In addition, some monolin-
gual PTMs have been released for different languages, such
as CamemBERT [89] and FlauBERT [90] for French, Fin-
BERT [152] for Finnish, BERTje [88]] and RobBERT [91] for
Dutch, AraBERT [155] for Arabic language.
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4.3 Multi-Modal PTMs

Observing the success of PTMs across many NLP tasks, some
research has focused on obtaining a cross-modal version of
PTMs. A great majority of these models are designed for
a general visual and linguistic feature encoding. And these
models are pre-trained on some huge corpus of cross-modal
data, such as videos with spoken words or images with cap-
tions, incorporating extended pre-training tasks to fully utilize
the multi-modal feature. Typically, tasks like visual-based
MLM, masked visual-feature modeling and visual-linguistic
matching are widely used in multi-modal pre-training, such as
VideoBERT [97], VisualBERT [94], ViLBERT [92].

4.3.1 Video-Text PTMs

VideoBERT [97] and CBT [98]] are joint video and text mod-
els. To obtain sequences of visual and linguistic tokens used
for pre-training, the videos are pre-processed by CNN-based
encoders and off-the-shelf speech recognition techniques, re-
spectively. And a single Transformer encoder is trained on the
processed data to learn the vision-language representations
for downstream tasks like video caption. Furthermore, Uni-
ViLM [156] proposes to bring in generation tasks to further
pre-train the decoder using in downstream tasks.

4.3.2 Image-Text PTMs

Besides methods for video-language pre-training, several
works introduce PTMs on image-text pairs, aiming to fit down-
stream tasks like visual question answering(VQA) and vi-
sual commonsense reasoning(VCR). Several proposed models
adopt two separate encoders for image and text representation
independently, such as VILBERT [92] and LXMERT [93]].
While other methods like VisualBERT [94], B2T2 [95], VL-
BERT [96], Unicoder-VL [[157] and UNITER [158] propose
single-stream unified Transformer. Though these model ar-
chitectures are different, similar pre-training tasks, such as
MLM and image-text matching, are introduced in these ap-
proaches. And to better exploit visual elements, images are
converted into sequences of regions by applying Rol or bound-
ing box retrieval techniques before encoded by pre-trained
Transformers.

4.3.3 Audio-Text PTMs

Moreover, several methods have explored the chance of PTMs
on audio-text pairs, such as SpeechBERT [99]]. This work tries
to build an end-to-end Speech Question Answering (SQA)
model by encoding audio and text with a single Transformer
encoder, which is pre-trained with MLM on speech and text
corpus and fine-tuned on Question Answering.
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4.4 Domain-Specific and Task-Specific PTMs

Most publicly available PTMs are trained on general do-
main corpora such as Wikipedia, which limits their appli-
cations to specific domains or tasks. Recently, some studies
have proposed PTMs trained on specialty corpora, such as
BioBERT [100] for biomedical text, SCIBERT [101]] for scien-
tific text, Clinical BERT [159, [160] for clinical text.

In addition to pre-training a domain-specific PTM, some
work attempts to adapt available pre-trained models to target
applications, such as biomedical entity normalization [161]],
patent classification [[102], progress notes classification and
keyword extraction [162].

Some task-oriented pre-training tasks were also proposed,
such as sentiment Label-Aware MLM in SentiLR [79] for sen-
timent analysis, Gap Sentence Generation (GSG) [163] for
text summarization, and Noisy Words Detection for disfluency
detection [164].

4.5 Model Compression

Since PTMs usually consist of at least hundreds of millions
of parameters, they are difficult to be deployed on the on-line
service in real-life applications and on resource-restricted de-
vices. Model compression [165]] is a potential approach to
reduce the model size and increase computation efficiency.

There are five ways to compress PTMs [166]: (1) model
pruning, which removes less important parameters, (2) weight
quantization [167], which uses fewer bits to represent the pa-
rameters, (3) parameter sharing across similar model units,
(4) knowledge distillation [[168]], which trains a smaller student
model that learns from intermediate outputs from the original
model and (5) module replacing, which replaces the modules
of original PTMs with more compact substitutes.

Table [3] gives a comparison of some representative com-
pressed PTMs.

4.5.1 Model Pruning

Model pruning refers to removing part of neural network (e.g.,
weights, neurons, layers, channels, attention heads), thereby
achieving the effects of reducing the model size and speeding
up inference time.

Gordon et al. [103] explored the timing of pruning (e.g.,
pruning during pre-training, after downstream fine-tuning) and
the pruning regimes. Michel et al. [[174]] and Voita et al. [175]
tried to prune the entire self-attention heads in the transformer
block.
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4.5.2 Quantization

Quantization refers to the compression of higher precision
parameters to lower precision. Works from Shen et al. [[104]]
and Zafrir et al. [105] solely focus on this area. Note that
quantization often requires compatible hardware.

4.5.3 Parameter Sharing

Another well-known approach to reduce the number of pa-
rameters is parameter sharing, which is widely used in CNNs,
RNNs, and Transformer [176]. ALBERT [63] uses cross-layer
parameter sharing and factorized embedding parameteriza-
tion to reduce the parameters of PTMs. Although the number
of parameters is greatly reduced, the training and inference
time of ALBERT are even longer than the standard BERT.

Generally, parameter sharing does not improve the compu-
tational efficiency at inference phase.

4.5.4 Knowledge Distillation

Knowledge distillation (KD) [[L68] is a compression technique
in which a small model called student model is trained to re-
produce the behaviors of a large model called teacher model.
Here the teacher model can be an ensemble of many models
and usually well pre-trained. Different to model compres-
sion, distillation techniques learn a small student model from
a fixed teacher model through some optimization objectives,
while compression techniques aiming at searching a sparser
architecture.

Generally, distillation mechanisms can be divided into three
types: (1) distillation from soft target probabilities, (2) dis-
tillation from other knowledge, and (3) distillation to other
structures:

(1) Distillation from soft target probabilities. Bucilua et al.
[[165] showed that making the student approximate the teacher
model can transfer knowledge from teacher to student. A com-
mon method is approximating the logits of the teacher model.
DistilBERT [[106] trained the student model with a distillation
loss over the soft target probabilities of the teacher as:

Lo = ) 1 log(sy), &

where #; and s; are the probabilities estimated by the teacher
model and the student, respectively.

Distillation from soft target probabilities can also be used
in task-specific models, such as information retrieval [177],
and sequence labeling [[178]].

(2) Distillation from other knowledge. Distillation from
soft target probabilities regards the teacher model as a black
box and only focus on its outputs. Moreover, decomposing
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Table 3: Comparison of Compressed PTMs

Method Type #Layer Loss Function® Speed Up Params Source PTM  GLUE*
BERTgasE [L6] . 12 Lyviim + Lnsp 110M 79.6
Baseline
BERTLarGE [16] 24 Lyvim + Lnsp 340M 81.9
Q-BERT [104] L 12 HAWQ + GWQ - BERTgAsE ~ 99% BERT®
Quantization
QS8BERT [105] 12 DQ + QAT - BERTgAsE ~ 99% BERT
ALBERTS [63] Param. Sharing 12 Lyvm + Lsop x5.6 ~0.3 12 ~ 235M 89.4 (ensemble)
DistilBERT [106] 6 Lxp.ce+Coskp+ Lmim x1.63 66M BERTgAsE 77.0 (dev)
TinyBERTS  [107] 4 MSEembed +MSEuun+ MSEpian+LKD.CE x9.4 14.5M BERTpase 765
BERT-PKD [169] 3~6  Lxp-ce+PTkp+ Lrask x373~1.64  457~67M  BERTpasg  76.0 ~ 80.6
PD [170] Distillation 6 Lxp-cE+Lrask+ Lvim x2.0 67.5M BERTgAsE 81.2¢
MobileBERTSTZT] 24 FMT+AT+PKT+ Lxp.ce+Lvmm x4.0 25.3M BERTLaRGE  79.7
MiniLM [108] 6 AT+AR x1.99 66M BERTBAsE 81.0"
DualTrain® {[172] 12 Dual Projection+Lyim - 1.8 ~ 19.2M BERTgAsE 75.8 ~ 81.9"
BERT-of-Theseus [109] Module Replacing 6 LTask x1.94 66M BERTgAsE 78.6

! The desing of this table is borrowed from [109}[173].

# The averaged score on 8 tasks (without WNLI) of GLUE benchmark (see Seclion4 Here MNLI-m and MNLI-mm are regarded as two different tasks. ‘dev’ indicates the result

is on dev set. ‘ensemble’ indicates the result is from the ensemble model.

*Lyvm ', “Lnsp’, and ‘Lgop’ indicate pre-training objective (see Seclion@and Tablem).‘llmk’ means task-specific loss.
‘HAWQ’, ‘GWQ’, ‘DQ’, and ‘QAT’ indicate Hessian AWare Quantization, Group-wise Quantization, Quantization-Aware Training, and Dynamically Quantized, respectively.
‘KD’ means knowledge distillation. ‘FMT’, ‘AT’, and ‘PKT’ mean Feature Map Transfer, Attention Transfer, and Progressive Knowledge Transfer, respectively. ‘AR’ means

Self-Attention value relation.
§ The dimensionality of the hidden or embedding layers is reduced.
 Use a smaller vocabulary.

’ Generally, the F1 score is usually used as the main metric of the QQP task. But MiniLM reports the accuracy, which is incomparable to other works.

¢ Result on MNLI and SST-2 only.
# Result on the other tasks except for STS-B and CoLA.
% Result on MRPC, MNLI, and SST-2 only.

the teacher model and distilling more knowledge can bring
improvement to the student model.

TinyBERT [107] performs layer-to-layer distillation with
embedding outputs, hidden states, and self-attention distribu-
tions. MobileBERT [171] also perform layer-to-layer distil-
lation with soft target probabilities, hidden states, and self-
attention distributions. MiniLM [108]] distill self-attention
distributions and self-attention value relation from teacher
model.

Besides, other models distill knowledge through many ap-
proaches. Sun et al. [169] introduced a “patient” teacher-
student mechanism, Liu et al. [179]] exploited KD to improve
a pre-trained multi-task deep neural network.

(3) Distillation to other structures. Generally, the structure
of the student model is the same as the teacher model, except
for a smaller layer size and a smaller hidden size. However,
not only decreasing parameters but also simplifying model
structures from Transformer to RNN [180] or CNN [181]] can
reduce the computational complexity.

4.5.5 Module Replacing

Module replacing is an interesting and simple way to reduce
the model size, which replaces the large modules of original
PTMs with more compact substitutes. Xu et al. [109] pro-
posed Theseus Compression motivated by a famous thought
experiment called “Ship of Theseus”, which progressively
substitutes modules from the source model with modules of

fewer parameters. Different from KD, Theseus Compression
only requires one task-specific loss function. The compressed
model, BERT-of-Theseus, is 1.94% faster while retaining more
than 98% performance of the source model.

4.5.6 Early Exit

Another efficient way to reduce the inference time is early exit,
which allows the model to exit early at an oft-ramp instead of
passing through the entire model. The number of layers to be
executed is conditioned on the input.

The idea of early exit is first applied in computer vision,
such as BranchyNet [[182]] and Shallow-Deep Network [[183]].
With the emergence of deep pre-trained language models,
early exit is recently adopted to speedup Transformer-based
models. As a prior work, Universal Transformer [[176] uses
the Adaptive Computation Time (ACT) mechanism [184] to
achieve input-adaptive computation. Elbayad et al. [[185]] pro-
posed Depth-adaptive transformer for machine translation,
which learns to predict how many decoding layers are re-
quired for a particular sequence or token. Instead of learning
how much computation is required, Liu et al. [186] proposed
two estimation approaches based on Mutual Information (MI)
and Reconstruction Loss respectively to directly allocate the
appropriate computation to each sample.

More recently, DeeBERT [110], RightTool [111], Fast-
BERT [112], ELBERT [187], PABEE [113]] are proposed
to reduce the computation of transformer encoder for natural
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language understanding tasks. Their methods usually contain
two steps: (a) Training the injected off-ramps (aka internal
classifiers), and (b) Designing an exiting strategy to decide
whether or not to exit.

Typically, the training objective is a weighted sum of the
cross-entropy losses at all off-ramps, i.e.

M
-Eearly-exil = Z w;i - L, (6)
i=1

where M is the number of off-ramps. FastBERT [112]] adopted
the self-distillation loss that trains each off-ramp with the soft
target generated by the final classifier. Liao et al. [114] im-
proved the objective by considering both the past and the
future information. In particular, the off-ramps are trained
to aggregate the hidden states of the past layers, and also ap-
proximate the hidden states of the future layers. Moreover,
Sun et al. [[115] developed a novel training objective from
the perspective of ensemble learning and mutual information,
by which the off-ramps are trained as an ensemble. Their
proposed objective not only optimizes the accuracy of each
off-ramp but also the diversity of the off-ramps.

During inference, an exiting strategy is required to decide
whether to exit early or continue to the next layer. Dee-
BERT [110], FastBERT [112]], Liao et al. [114] adopt the
entropy of the prediction distribution as the exiting criterion.
Similarly, RightTool [111] use the maximum softmax score to
decide whether to exit. PABEE developed a patience-based
strategy that allows a sample to exit when the prediction is
unchanged for successive layers. Further, Sun et al. [115]
adopt a voting-based strategy to let all of the past off-ramps
take a vote to decide whether or not to exit. Besides, Li et al.
[L16] proposed a window-based uncertainty as the exiting cri-
terion to achieve token-level early exit (TokEE) for sequence
labeling tasks.

5 Adapting PTMs to Downstream Tasks

Although PTMs capture the general language knowledge from
a large corpus, how effectively adapting their knowledge to
the downstream task is still a key problem.

5.1 Transfer Learning

Transfer learning [188] is to adapt the knowledge from a
source task (or domain) to a target task (or domain). Fig-
ure [d gives an illustration of transfer learning.

There are many types of transfer learning in NLP, such as
domain adaptation, cross-lingual learning, multi-task learning.
Adapting PTMs to downstream tasks is sequential transfer
learning task, in which tasks are learned sequentially and the
target task has labeled data.
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Figure 4: Transfer Learning

5.2 How to Transfer?

To transfer the knowledge of a PTM to the downstream NLP
tasks, we need to consider the following issues:

5.2.1 Choosing appropriate pre-training task, model archi-
tecture and corpus

Different PTMs usually have different effects on the same
downstream task, since these PTMs are trained with various
pre-training tasks, model architecture, and corpora.

(1) Currently, the language model is the most popular pre-
training task and can more efficiently solve a wide range of
NLP problems [58]]. However, different pre-training tasks
have their own bias and give different effects for different
tasks. For example, the NSP task [16] makes PTM understand
the relationship between two sentences. Thus, the PTM can
benefit downstream tasks such as Question Answering (QA)
and Natural Language Inference (NLI).

(2) The architecture of PTM is also important for the down-
stream task. For example, although BERT helps with most
natural language understanding tasks, it is hard to generate
language.

(3) The data distribution of the downstream task should be
approximate to PTMs. Currently, there are a large number of
off-the-shelf PTMs, which can just as conveniently be used
for various domain-specific or language-specific downstream
tasks.

Therefore, given a target task, it is always a good solution
to choose the PTMs trained with appropriate pre-training task,
architecture, and corpus.

5.2.2 Choosing appropriate layers

Given a pre-trained deep model, different layers should cap-
ture different kinds of information, such as POS tagging, pars-
ing, long-term dependencies, semantic roles, coreference. For
RNN-based models, Belinkov et al. [189] and Melamud et al.
[34] showed that representations learned from different layers
in a multi-layer LSTM encoder benefit different tasks (e.g.,
predicting POS tags and understanding word sense). For
transformer-based PTMs, Tenney et al. [122]] found BERT
represents the steps of the traditional NLP pipeline: basic
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syntactic information appears earlier in the network, while
high-level semantic information appears at higher layers.

Let HO(1 < I < L) denotes the I-th layer representation
of the pre-trained model with L layers, and g(-) denote the
task-specific model for the target task.

There are three ways to select the representation:

a) Embedding Only. One approach is to choose only the
pre-trained static embeddings, while the rest of the model still
needs to be trained from scratch for a new target task.

They fail to capture higher-level information that might
be even more useful. Word embeddings are only useful in
capturing semantic meanings of words, but we also need to
understand higher-level concepts like word sense.

b) Top Layer. The most simple and effective way is to feed
the representation at the top layer into the task-specific model
gH®).

c) All Layers. A more flexible way is to automatic choose
the best layer in a soft version, like ELMo [14]:

L
r,=y ) ah, )
=1

where ¢; is the softmax-normalized weight for layer [ and vy is
a scalar to scale the vectors output by pre-trained model. The
mixup representation is fed into the task-specific model g(r;).

5.2.3 To tune or not to tune?

Currently, there are two common ways of model transfer: fea-
ture extraction (where the pre-trained parameters are frozen),
and fine-tuning (where the pre-trained parameters are unfrozen
and fine-tuned).

In feature extraction way, the pre-trained models are re-
garded as off-the-shelf feature extractors. Moreover, it is im-
portant to expose the internal layers as they typically encode
the most transferable representations [190].

Although both these two ways can significantly benefit
most of NLP tasks, feature extraction way requires more com-
plex task-specific architecture. Therefore, the fine-tuning way
is usually more general and convenient for many different
downstream tasks than feature extraction way.

Table [] gives some common combinations of adapting
PTMs.

Table 4: Some common combinations of adapting PTMs.

Where FT/FE?" PTMs
Embedding Only FT/FE  Word2vec [11], GloVe [12]
Top Layer FT BERT [16], RoBERTa [43]
Top Layer FE BERT? [1911[192]
All Layers FE ELMo [14]

T FT and FE mean Fine-tuning and Feature Extraction respectively.
8 BERT used as feature extractor.
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5.3 Fine-Tuning Strategies

With the increase of the depth of PTMs, the representation cap-
tured by them makes the downstream task easier. Therefore,
the task-specific layer of the whole model is simple. Since
ULMFit and BERT, fine-tuning has become the main adaption
method of PTMs. However, the process of fine-tuning is often
brittle: even with the same hyper-parameter values, distinct
random seeds can lead to substantially different results [193]].

Besides standard fine-tuning, there are also some useful
fine-tuning strategies.

Two-stage fine-tuning An alternative solution is two-stage
transfer, which introduces an intermediate stage between pre-
training and fine-tuning. In the first stage, the PTM is trans-
ferred into a model fine-tuned by an intermediate task or cor-
pus. In the second stage, the transferred model is fine-tuned
to the target task. Sun et al. [64] showed that the “further pre-
training” on the related-domain corpus can further improve
the ability of BERT and achieved state-of-the-art performance
on eight widely-studied text classification datasets. Phang
et al. [194] and Garg et al. [193] introduced the intermedi-
ate supervised task related to the target task, which brings a
large improvement for BERT, GPT, and ELMo. Li et al. [65]]
also used a two-stage transfer for the story ending prediction.
The proposed TransBERT (transferable BERT) can transfer
not only general language knowledge from large-scale unla-
beled data but also specific kinds of knowledge from various
semantically related supervised tasks.

Multi-task fine-tuning Liu et al. [67] fine-tuned BERT un-
der the multi-task learning framework, which demonstrates
that multi-task learning and pre-training are complementary
technologies.

Fine-tuning with extra adaptation modules The main
drawback of fine-tuning is its parameter inefficiency: every
downstream task has its own fine-tuned parameters. There-
fore, a better solution is to inject some fine-tunable adaptation
modules into PTMs while the original parameters are fixed.
Stickland and Murray [68] equipped a single share BERT
model with small additional task-specific adaptation modules,
projected attention layers (PALs). The shared BERT with
the PALs matches separately fine-tuned models on the GLUE
benchmark with roughly 7 times fewer parameters. Similarly,
Houlsby et al. [69] modified the architecture of pre-trained
BERT by adding adapter modules. Adapter modules yield a
compact and extensible model; they add only a few trainable
parameters per task, and new tasks can be added without re-
visiting previous ones. The parameters of the original network
remain fixed, yielding a high degree of parameter sharing.
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Others Motivated by the success of widely-used ensemble
models, Xu et al. [196] improved the fine-tuning of BERT with
two effective mechanisms: self-ensemble and self-distillation,
which can improve the performance of BERT on downstream
tasks without leveraging external resource or significantly de-
creasing the training efficiency. They integrated ensemble and
distillation within a single training process. The teacher model
is an ensemble model by parameter-averaging several student
models in previous time steps.

Instead of fine-tuning all the layers simultaneously, grad-
ual unfreezing [38]] is also an effective method that gradu-
ally unfreezes layers of PTMs starting from the top layer.
Chronopoulou et al. [197] proposed a simpler unfreezing
method, sequential unfreezing, which first fine-tunes only the
randomly-initialized task-specific layers, and then unfreezes
the hidden layers of PTM, and finally unfreezes the embedding
layer.

Li and Eisner [198]] compressed ELMo embeddings us-
ing variational information bottleneck while keeping only the
information that helps the target task.

Generally, the above works show that the utility of PTMs
can be further stimulated by better fine-tuning strategies.

5.3.1 Prompt-based Tuning

Narrowing the gap between pre-training and fine-tuning can
further boost the performance of PTMs on downstream tasks.
An alternative approach is reformulating the downstream
tasks into a MLM task by designing appropriate prompts.
Prompt-based methods have shown great power in few-shot
setting [199, 200}, (70, [72], zero-shot setting [[129, 201]], and
even fully-supervised setting [74. [75]]. Current prompt-based
methods can be categorized as two branches according to the
prompt is whether discrete or continuous.

Discrete prompts Discrete prompt is a sequence of words
to be inserted into the input text, which helps the PTM to bet-
ter model the downstream task. Sun et al. [202] constructed
an auxiliary sentence by transforming aspect-based sentiment
analysis (ABSA) task to a sentence pair classification task, but
its model parameters still need to be fine-tuned. GPT-3 [59]
proposed the in-context learning that concatenates the original
input with the task description and a few examples. By this,
GPT-3 can achieve competitive performance without tuning
the parameters. Besides, Petroni et al. [129] found that with
proper manual prompt, BERT can perform well on entity pre-
diction task (LAMA) without training. In addition to LAMA,
Schick and Schiitze [200) [70] proposed PET that designed
discrete prompts for various text classification and entailment
tasks. However, the manually designed prompts can be sub-
optimal, as a result, many methods are developed to automate

Pre-trained Models for Natural Language Processing: A Survey

March (2020) 17

the generation of prompts. LPAQA [201] uses two methods,
i.e., mining-based generation and paraphrasing-based gen-
eration, to find the optimal patterns that express particular
relations. AutoPrompt [71] finds the optimal prompt with
gradient-guided search. LM-BFF [72] employs T5 [42] to
automatically generate prompts.

Continuous prompts Instead of finding the optimal con-
crete prompt, another alternative is to directly optimize the
prompt in continuous space, i.e. the prompt vectors are not
necessarily word type embeddings of the PTM. The opti-
mized continuous prompt is concatenated with word type
embeddings, which is then fed into the PTM. Qin and Eisner
[203] and Zhong et al. [204] found that the optimized con-
tinuous prompt can outperform concrete prompts (including
manual [129], mined (LPAQA [201]]), and gradient-searched
(AutoPrompt [71]]) prompts) on relational tasks. WARP [73]]
inserts trainable continuous prompt tokens before, between,
and after the input sequence while keeping the parameters
of the PTM fixed, resulting in considerable performance on
GLUE benchmark. Prefix-Tuning [74] inserts continuous
prompt as prefix of the input of GPT-2 for table-to-text gen-
eration and BART for summarization. Prefix-Tuning, as a
parameter-efficient tuning technique, achieved comparable per-
formance in fully-supervised setting and outperformed model
fine-tuning in few-shot setting. Further, P-Tuning [[75]] showed
that, with continuous prompt, GPT can also achieve compa-
rable or even better performance to similar-sized BERT on
natural language understanding (NLU) tasks. Very recently,
Lester et al. [205] showed that prompt tuning becomes more
competitive with scale. When the PTM exceeds billions of
parameters, the gap between model fine-tuning and prompt
tuning can be closed, which makes the prompt-based tuning
a very promising method for efficient serving of large-scale
PTMs.

6 Resources of PTMs

There are many related resources for PTMs available online.
Table 5] provides some popular repositories, including third-
party implementations, paper lists, visualization tools, and
other related resources of PTMs.

Besides, there are some other good survey papers on PTMs
for NLP [211} 212} [173]].

7 Applications

In this section, we summarize some applications of PTMs in
several classic NLP tasks.
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Table 5: Resources of PTMs

Resource Description URL

Open-Source Implementations ¥
word2vec CBOW,Skip-Gram https://github.com/tmikolov/word2vec
GloVe Pre-trained word vectors https://nlp.stanford.edu/projects/glove
FastText Pre-trained word vectors https://github.com/facebookresearch/fastText
Transformers Framework: PyTorch&TF, PTMs: BERT, GPT-2, RoBERTa, XLNet, etc.  https://github.com/huggingface/transformers
Fairseq Framework: PyTorch, PTMs:English LM, German LM, RoBERTa, etc. https://github.com/pytorch/fairseq
Flair Framework: PyTorch, PTMs:BERT, ELMo, GPT, RoBERTa, XLNet, etc.  https://github.com/flairNLP/flair

AllenNLP [208]

Framework: PyTorch, PTMs: ELMo, BERT, GPT-2, etc.

https://github.com/allenai/allennlp

fastNLP Framework: PyTorch, PTMs: RoBERTa, GPT, etc. https://github.com/fastnlp/fastNLP

UniLMs Framework: PyTorch, PTMs: UniLM v1&v2, MiniLM, LayoutLM, etc. https://github.com/microsoft/unilm

Chinese-BERT [85]] Framework: PyTorch&TF, PTMs: BERT, RoBERTA,, etc. (for Chinese) https://github.com/ymcui/Chinese-BERT-wwm

BERT [16] Framework: TF, PTMs: BERT, BERT-wwm https://github.com/google-research/bert

RoBERTa [43] Framework: PyTorch https://github.com/pytorch/fairseq/tree/master/examples/roberta
XLNet [49] Framework: TF https://github.com/zihangdai/xInet/

ALBERT [63] Framework: TF https://github.com/google-research/ ALBERT

T5 [42] Framework: TF https://github.com/google-research/text-to-text-transfer-transformer
ERNIE(Baidu) [84,[153] Framework: PaddlePaddle https://github.com/PaddlePaddle/ERNIE

CTRL [207] Conditional Transformer Language Model for Controllable Generation. https://github.com/salesforce/ctrl

BertViz [208]
exBERT [209]

Visualization Tool

Visualization Tool

https://github.com/jessevig/bertviz
https://github.com/bhoov/exbert

TextBrewer [210] PyTorch-based toolkit for distillation of NLP models. https://github.com/airaria/TextBrewer
DeepPavlov Conversational Al Library. PTMs for the Russian, Polish, Bulgarian, https://github.com/deepmipt/DeepPavlov
Czech, and informal English.
Corpora
OpenWebText Open clone of OpenAl’s unreleased WebText dataset. https://github.com/jcpeterson/openwebtext
Common Crawl A very large collection of text. http://commoncrawl.org/
WikiEn English Wikipedia dumps. https://dumps.wikimedia.org/enwiki/
Other Resources
Paper List https://github.com/thunlp/PLMpapers
Paper List https://github.com/tomohideshibata/BERT-related-papers
Paper List https://github.com/cedrickchee/awesome-bert-nlp

Bert Lang Street
datasets, tasks and languages.

A collection of BERT models with reported performances on different

https://bertlang.unibocconi.it/

§ Most papers for PTMs release their links of official version. Here we list some popular third-party and official implementations.

7.1 General Evaluation Benchmark

There is an essential issue for the NLP community that how
can we evaluate PTMs in a comparable metric. Thus, large-
scale-benchmark is necessary.

The General Language Understanding Evaluation (GLUE)
benchmark [213]] is a collection of nine natural language under-
standing tasks, including single-sentence classification tasks
(CoLA and SST-2), pairwise text classification tasks (MNLI,
RTE, WNLI, QQP, and MRPC), text similarity task (STS-
B), and relevant ranking task (QNLI). GLUE benchmark is
well-designed for evaluating the robustness as well as general-
ization of models. GLUE does not provide the labels for the
test set but set up an evaluation server.

However, motivated by the fact that the progress in recent
years has eroded headroom on the GLUE benchmark dra-
matically, a new benchmark called SuperGLUE [214] was
presented. Compared to GLUE, SuperGLUE has more chal-

4) https://gluebenchmark.com/
5) https://super.gluebenchmark.com/

lenging tasks and more diverse task formats (e.g., coreference
resolution and question answering).
State-of-the-art PTMs are listed in the corresponding leader-

board®] 1]

7.2 Question Answering

Question answering (QA), or a narrower concept machine
reading comprehension (MRC), is an important application in
the NLP community. From easy to hard, there are three types
of QA tasks: single-round extractive QA (SQuAD) [215],
multi-round generative QA (CoQA) [216]], and multi-hop QA
(HotpotQA) [217]].

BERT creatively transforms the extractive QA task to the
spans prediction task that predicts the starting span as well
as the ending span of the answer [16]. After that, PTM as
an encoder for predicting spans has become a competitive
baseline. For extractive QA, Zhang et al. [218]] proposed a ret-
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rospective reader architecture and initialize the encoder with
PTM (e.g., ALBERT). For multi-round generative QA, Ju et al.
[219] proposed a “PTM+Adversarial Training+Rationale Tag-
ging+Knowledge Distillation” model. For multi-hop QA, Tu
et al. [220] proposed an interpretable “Select, Answer, and
Explain” (SAE) system that PTM acts as the encoder in the
selection module.

Generally, encoder parameters in the proposed QA model
are initialized through a PTM, and other parameters are ran-
domly initialized. State-of-the-art models are listed in the

corresponding leaderboard.

7.3 Sentiment Analysis

BERT outperforms previous state-of-the-art models by simply
fine-tuning on SST-2, which is a widely used dataset for senti-
ment analysis (SA) [16]]. Bataa and Wu [221]] utilized BERT
with transfer learning techniques and achieve new state-of-the-
art in Japanese SA.

Despite their success in simple sentiment classification,
directly applying BERT to aspect-based sentiment analysis
(ABSA), which is a fine-grained SA task, shows less signif-
icant improvement [202]. To better leverage the powerful
representation of BERT, Sun et al. [202] constructed an auxil-
iary sentence by transforming ABSA from a single sentence
classification task to a sentence pair classification task. Xu
et al. [222] proposed post-training to adapt BERT from its
source domain and tasks to the ABSA domain and tasks. Fur-
thermore, Rietzler et al. [223]] extended the work of [222]
by analyzing the behavior of cross-domain post-training with
ABSA performance. Karimi et al. [224] showed that the per-
formance of post-trained BERT could be further improved
via adversarial training. Song et al. [225]] added an additional
pooling module, which can be implemented as either LSTM
or attention mechanism, to leverage BERT intermediate lay-
ers for ABSA. In addition, Li et al. [226] jointly learned as-
pect detection and sentiment classification towards end-to-end
ABSA. SentiLR [79]] acquires part-of-speech tag and prior sen-
timent polarity from SentiWordNet and adopts Label-Aware
MLM to utilize the introduced linguistic knowledge to capture
the relationship between sentence-level sentiment labels and
word-level sentiment shifts. SentiLR achieves state-of-the-art
performance on several sentence- and aspect-level sentiment
classification tasks.

For sentiment transfer, Wu et al. [227] proposed “Mask
and Infill” based on BERT. In the mask step, the model disen-
tangles sentiment from content by masking sentiment tokens.
In the infill step, it uses BERT along with a target sentiment

6) https://rajpurkar.github.io/SQuAD-explorer/
7) https://stanfordnlp.github.io/coqa/
8) https://hotpotqa.github.io/
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embedding to infill the masked positions.

7.4 Named Entity Recognition

Named Entity Recognition (NER) in information extraction
and plays an important role in many NLP downstream tasks.
In deep learning, most of NER methods are in the sequence-
labeling framework. The entity information in a sentence
will be transformed into the sequence of labels, and one label
corresponds to one word. The model is used to predict the
label of each word. Since ELMo and BERT have shown their
power in NLP, there is much work about pre-trained models
for NER.

Akbik et al. [37] used a pre-trained character-level language
model to produce word-level embedding for NER. TagLM
[228] and ELMo [14] use a pre-trained language model’s last
layer output and weighted-sum of each layer output as a part
of word embedding. Liu et al. [229] used layer-wise pruning
and dense connection to speed up ELMo’s inference on NER.
Devlin et al. [[16] used the first BPE’s BERT representation
to predict each word’s label without CRF. Pires et al. [150]
realized zero-shot NER through multilingual BERT. Tsai et al.
[[L78]] leveraged knowledge distillation to run a small BERT
for NER on a single CPU. Besides, BERT is also used on
domain-specific NER, such as biomedicine [230} [100]], etc.

7.5 Machine Translation

Machine Translation (MT) is an important task in the NLP
community, which has attracted many researchers. Almost
all of Neural Machine Translation (NMT) models share the
encoder-decoder framework, which first encodes input tokens
to hidden representations by the encoder and then decodes
output tokens in the target language from the decoder. Ra-
machandran et al. [36]] found the encoder-decoder models can
be significantly improved by initializing both encoder and
decoder with pre-trained weights of two language models.
Edunov et al. [231] used ELMo to set the word embedding
layer in the NMT model. This work shows performance im-
provements on English-Turkish and English-German NMT
model by using a pre-trained language model for source word
embedding initialization.

Given the superb performance of BERT on other NLP
tasks, it is natural to investigate how to incorporate BERT into
NMT models. Conneau and Lample [46] tried to initialize
the entire encoder and decoder by a multilingual pre-trained
BERT model and showed a significant improvement could be
achieved on unsupervised MT and English-Romanian super-
vised MT. Similarly, Clinchant et al. [232] devised a series
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of different experiments for examining the best strategy to
utilize BERT on the encoder part of NMT models. They
achieved some improvement by using BERT as an initializa-
tion of the encoder. Also, they found that these models can get
better performance on the out-of-domain dataset. Imamura
and Sumita [233]] proposed a two stages BERT fine-tuning
method for NMT. At the first stage, the encoder is initialized
by a pre-trained BERT model, and they only train the decoder
on the training set. At the second stage, the whole NMT
model is jointly fine-tuned on the training set. By experiment,
they show this approach can surpass the one stage fine-tuning
method, which directly fine-tunes the whole model. Apart
from that, Zhu et al. [192] suggested using pre-trained BERT
as an extra memory to facilitate NMT models. Concretely,
they first encode the input tokens by a pre-trained BERT and
use the output of the last layer as extra memory. Then, the
NMT model can access the memory via an extra attention mod-
ule in each layer of both encoder and decoder. And they show
a noticeable improvement in supervised, semi-supervised, and
unsupervised MT.

Instead of only pre-training the encoder, MASS (Masked
Sequence-to-Sequence Pre-Training) [41] utilizes Seq2Seq
MLM to pre-train the encoder and decoder jointly. In the
experiment, this approach can surpass the BERT-style pre-
training proposed by Conneau and Lample [46] both on un-
supervised MT and English-Romanian supervised MT. Dif-
ferent from MASS, mBART [61]], a multilingual extension
of BART [50]], pre-trains the encoder and decoder jointly
with Seq2Seq denoising auto-encoder (DAE) task on large-
scale monolingual corpora across 25 languages. Experiments
demonstrated that mBART could significantly improve both
supervised and unsupervised machine translation at both the
sentence level and document level.

7.6 Summarization

Summarization, aiming at producing a shorter text which pre-
serves the most meaning of a longer text, has attracted the
attention of the NLP community in recent years. The task
has been improved significantly since the widespread use of
PTM. Zhong et al. [191]] introduced transferable knowledge
(e.g., BERT) for summarization and surpassed previous mod-
els. Zhang et al. [234] tries to pre-trained a document-level
model that predicts sentences instead of words, and then apply
it on downstream tasks such as summarization. More elabo-
rately, Zhang et al. [163]] designed a Gap Sentence Generation
(GSQG) task for pre-training, whose objective involves generat-
ing summary-like text from the input. Furthermore, Liu and
Lapata [235]] proposed BERTSUM. BERTSUM included a
novel document-level encoder, and a general framework for
both extractive summarization and abstractive summarization.

In the encoder frame, BERTSUM extends BERT by inserting
multiple [CLS] tokens to learn the sentence representations.
For extractive summarization, BERTSUM stacks several inter-
sentence Transformer layers. For abstractive summarization,
BERTSUM proposes a two-staged fine-tuning approach using
a new fine-tuning schedule. Zhong et al. [236]] proposed a
novel summary-level framework MATCHSUM and conceptu-
alized extractive summarization as a semantic text matching
problem. They proposed a Siamese-BERT architecture to
compute the similarity between the source document and the
candidate summary and achieved a state-of-the-art result on
CNN/DailyMail (44.41 in ROUGE-1) by only using the base
version of BERT.

7.7 Adversarial Attacks and Defenses

The deep neural models are vulnerable to adversarial examples
that can mislead a model to produce a specific wrong predic-
tion with imperceptible perturbations from the original input.
In CV, adversarial attacks and defenses have been widely stud-
ied. However, it is still challenging for text due to the discrete
nature of languages. Generating of adversarial samples for
text needs to possess such qualities: (1) imperceptible to hu-
man judges yet misleading to neural models; (2) fluent in
grammar and semantically consistent with original inputs. Jin
et al. [237] successfully attacked the fine-tuned BERT on text
classification and textual entailment with adversarial exam-
ples. Wallace et al. [238] defined universal adversarial triggers
that can induce a model to produce a specific-purpose predic-
tion when concatenated to any input. Some triggers can even
cause the GPT-2 model to generate racist text. Sun et al. [239]
showed BERT is not robust on misspellings.

PTMs also have great potential to generate adversarial sam-
ples. Li et al. [240] proposed BERT-Attack, a BERT-based
high-quality and effective attacker. They turned BERT against
another fine-tuned BERT on downstream tasks and success-
fully misguided the target model to predict incorrectly, out-
performing state-of-the-art attack strategies in both success
rate and perturb percentage, while the generated adversarial
samples are fluent and semantically preserved.

Besides, adversarial defenses for PTMs are also promis-
ing, which improve the robustness of PTMs and make them
immune against adversarial attack.

Adversarial training aims to improve the generalization
by minimizes the maximal risk for label-preserving perturba-
tions in embedding space. Recent work [241] 242]] showed
that adversarial pre-training or fine-tuning can improve both
generalization and robustness of PTMs for NLP.
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8 Future Directions

Though PTMs have proven their power for various NLP tasks,
challenges still exist due to the complexity of language. In
this section, we suggest five future directions of PTMs.

(1) Upper Bound of PTMs Currently, PTMs have not yet
reached its upper bound. Most of the current PTMs can be
further improved by more training steps and larger corpora.

The state of the art in NLP can be further advanced by
increasing the depth of models, such as Megatron-LM [243]
(8.3 billion parameters, 72 Transformer layers with a hidden
size of 3072 and 32 attention heads) and Turing—NLCﬂ (17
billion parameters, 78 Transformer layers with a hidden size
of 4256 and 28 attention heads).

The general-purpose PTMs are always our pursuits for
learning the intrinsic universal knowledge of languages (even
world knowledge). However, such PTMs usually need deeper
architecture, larger corpus, and challenging pre-training tasks,
which further result in higher training costs. However, train-
ing huge models is also a challenging problem, which needs
more sophisticated and efficient training techniques such as
distributed training, mixed precision, gradient accumulation,
etc. Therefore, a more practical direction is to design more
efficient model architecture, self-supervised pre-training tasks,
optimizers, and training skills using existing hardware and
software. ELECTRA [56] is a good solution towards this
direction.

(2) Architecture of PTMs The Transformer has been
proved to be an effective architecture for pre-training. How-
ever, the main limitation of the Transformer is its computation
complexity, which is quadratic to the input length. Limited
by the memory of GPUs, most of current PTMs cannot deal
with the sequence longer than 512 tokens. Breaking this limit
needs to improve the architecture of the Transformer. Al-
though many works [25]] tried to improve the efficiency of
Transformer, there remains much room for improvement.

Besides, searching for more efficient alternative non-
Transformer architecture for PTMs is important to capture
longer-range contextual information. The design of deep
architecture is challenging, and we may seek help from
some automatic methods, such as neural architecture search
(NAS) [245].

(3) Task-oriented Pre-training and Model Compression
In practice, different downstream tasks require the different
abilities of PTMs. The discrepancy between PTMs and down-
stream tasks usually lies in two aspects: model architecture
and data distribution. A larger discrepancy may result in that
the benefit of PTMs may be insignificant. For example, text
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generation usually needs a specific task to pre-train both the
encoder and decoder, while text matching needs pre-training
tasks designed for sentence pairs.

Besides, although larger PTMs can usually lead to better
performance, a practical problem is how to leverage these
huge PTMs on special scenarios, such as low-capacity devices
and low-latency applications. Therefore, we can carefully de-
sign the specific model architecture and pre-training tasks for
downstream tasks or extract partial task-specific knowledge
from existing PTMs.

Instead of training task-oriented PTMs from scratch, we
can teach them with existing general-purpose PTMs by us-
ing techniques such as model compression (see Section {.5).
Although model compression is widely studied for CNNs in
CV [246], compression for PTMs for NLP is just beginning.
The fully-connected structure of the Transformer also makes
model compression more challenging.

(4) Knowledge Transfer Beyond Fine-tuning Currently,
fine-tuning is the dominant method to transfer PTMs’ knowl-
edge to downstream tasks, but one deficiency is its parameter
inefficiency: every downstream task has its own fine-tuned
parameters. An improved solution is to fix the original pa-
rameters of PTMs and by adding small fine-tunable adap-
tion modules for specific task [68], |69]. Thus, we can use
a shared PTM to serve multiple downstream tasks. Indeed,
mining knowledge from PTMs can be more flexible, such as
feature extraction, knowledge distillation [210], data augmen-
tation [247} 248]], using PTMs as external knowledge [129].
More efficient methods are expected.

(5) Interpretability and Reliability of PTMs Although
PTMs reach impressive performance, their deep non-linear
architecture makes the procedure of decision-making highly
non-transparent.

Recently, explainable artificial intelligence (XAI) [249] has
become a hotspot in the general Al community. Unlike CNNs
for images, interpreting PTMs is harder due to the complex-
ities of both the Transformer-like architecture and language.
Extensive efforts (see Section have been made to analyze
the linguistic and world knowledge included in PTMs, which
help us understand these PMTs with some degree of trans-
parency. However, much work on model analysis depends on
the attention mechanism, and the effectiveness of attention for
interpretability is still controversial [250, 251]].

Besides, PTMs are also vulnerable to adversarial attacks
(see Section[7.7). The reliability of PTMs is also becoming
an issue of great concern with the extensive use of PTMs in
production systems. The studies of adversarial attacks against
PTMs help us understand their capabilities by fully exposing

9) https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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their vulnerabilities. Adversarial defenses for PTMs are also
promising, which improve the robustness of PTMs and make
them immune against adversarial attack.

Overall, as key components in many NLP applications,
the interpretability and reliability of PTMs remain to be ex-
plored further in many respects, which helps us understand
how PTMs work and provides a guide for better usage and
further improvement.

9 Conclusion

In this survey, we conduct a comprehensive overview of
PTMs for NLP, including background knowledge, model ar-
chitecture, pre-training tasks, various extensions, adaption
approaches, related resources, and applications. Based on
current PTMs, we propose a new taxonomy of PTMs from
four different perspectives. We also suggest several possible
future research directions for PTMs.
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